L(s) = 1 | + (−1.65 + 2.87i)3-s + (−1.65 − 2.87i)7-s + (−4 − 6.92i)9-s + (−1.65 + 2.87i)11-s + (−1 − 3.46i)13-s + (1.5 + 2.59i)17-s + (−1.65 − 2.87i)19-s + 11·21-s + (1.65 − 2.87i)23-s − 5·25-s + 16.5·27-s + (2.5 − 4.33i)29-s + (−5.5 − 9.52i)33-s + (−4.5 + 7.79i)37-s + (11.6 + 2.87i)39-s + ⋯ |
L(s) = 1 | + (−0.957 + 1.65i)3-s + (−0.626 − 1.08i)7-s + (−1.33 − 2.30i)9-s + (−0.500 + 0.866i)11-s + (−0.277 − 0.960i)13-s + (0.363 + 0.630i)17-s + (−0.380 − 0.658i)19-s + 2.40·21-s + (0.345 − 0.598i)23-s − 25-s + 3.19·27-s + (0.464 − 0.804i)29-s + (−0.957 − 1.65i)33-s + (−0.739 + 1.28i)37-s + (1.85 + 0.459i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0128 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0128 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.172266 - 0.170071i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.172266 - 0.170071i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (1 + 3.46i)T \) |
good | 3 | \( 1 + (1.65 - 2.87i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 5T^{2} \) |
| 7 | \( 1 + (1.65 + 2.87i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.65 - 2.87i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.5 - 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.65 + 2.87i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.65 + 2.87i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.5 + 4.33i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + (4.5 - 7.79i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.5 + 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.97 + 8.61i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 6.63T + 47T^{2} \) |
| 53 | \( 1 + 8T + 53T^{2} \) |
| 59 | \( 1 + (1.65 + 2.87i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.5 - 7.79i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.97 - 8.61i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (4.97 + 8.61i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 4T + 73T^{2} \) |
| 79 | \( 1 - 6.63T + 79T^{2} \) |
| 83 | \( 1 + 13.2T + 83T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (3.5 + 6.06i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.59228494195776539483679486489, −10.20942033477625921288845056072, −9.715342692044473904762367653723, −8.408443863253367011453782325409, −7.05266527011519654170626685934, −6.03063996788653119022733098805, −4.98119725872838407342100120594, −4.20983021190472638747178398866, −3.18986675445017056955313795116, −0.16880055800898607543769502140,
1.72082436000843088939663263624, 2.94841899390525123404647264971, 5.14897833310567816177935343407, 5.92359059338008495314646692299, 6.59656335498201544698006380011, 7.60017885510005422526492770268, 8.463771853109622890807897440744, 9.568903761745710862371818343130, 10.94805996058471822880669610983, 11.64841941371666837721278998082