L(s) = 1 | − 2-s + 4-s − 1.41·5-s − 8-s + 1.41·10-s − 1.41·13-s + 16-s + 1.41·17-s − 1.41·20-s + 1.00·25-s + 1.41·26-s + 2·29-s − 32-s − 1.41·34-s + 1.41·40-s + 1.41·41-s − 1.00·50-s − 1.41·52-s − 2·58-s + 1.41·61-s + 64-s + 2.00·65-s + 1.41·68-s + 1.41·73-s − 1.41·80-s − 1.41·82-s − 2.00·85-s + ⋯ |
L(s) = 1 | − 2-s + 4-s − 1.41·5-s − 8-s + 1.41·10-s − 1.41·13-s + 16-s + 1.41·17-s − 1.41·20-s + 1.00·25-s + 1.41·26-s + 2·29-s − 32-s − 1.41·34-s + 1.41·40-s + 1.41·41-s − 1.00·50-s − 1.41·52-s − 2·58-s + 1.41·61-s + 64-s + 2.00·65-s + 1.41·68-s + 1.41·73-s − 1.41·80-s − 1.41·82-s − 2.00·85-s + ⋯ |
Λ(s)=(=(1764s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(1764s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
1764
= 22⋅32⋅72
|
Sign: |
1
|
Analytic conductor: |
0.880350 |
Root analytic conductor: |
0.938270 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1764(883,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 1764, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.5208588155 |
L(21) |
≈ |
0.5208588155 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+1.41T+T2 |
| 11 | 1−T2 |
| 13 | 1+1.41T+T2 |
| 17 | 1−1.41T+T2 |
| 19 | 1−T2 |
| 23 | 1−T2 |
| 29 | 1−2T+T2 |
| 31 | 1−T2 |
| 37 | 1+T2 |
| 41 | 1−1.41T+T2 |
| 43 | 1−T2 |
| 47 | 1−T2 |
| 53 | 1+T2 |
| 59 | 1−T2 |
| 61 | 1−1.41T+T2 |
| 67 | 1−T2 |
| 71 | 1−T2 |
| 73 | 1−1.41T+T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1+1.41T+T2 |
| 97 | 1−1.41T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.573851337685422654283782445352, −8.499641658719668833265027931500, −7.937278212016017953230038094861, −7.39285223842948294178162293358, −6.68520672525392673578417997868, −5.50631582440132158687708465641, −4.47532135661802338154032159259, −3.37700479978420989531265258823, −2.51730789116789760703552203771, −0.840214520965958584451282685107,
0.840214520965958584451282685107, 2.51730789116789760703552203771, 3.37700479978420989531265258823, 4.47532135661802338154032159259, 5.50631582440132158687708465641, 6.68520672525392673578417997868, 7.39285223842948294178162293358, 7.937278212016017953230038094861, 8.499641658719668833265027931500, 9.573851337685422654283782445352