L(s) = 1 | + (0.655 + 1.27i)2-s + (−0.309 + 2.81i)3-s + (1.13 − 1.57i)4-s + (−3.99 + 1.87i)5-s + (−3.79 + 1.45i)6-s + (2.49 − 11.2i)7-s + (8.43 + 1.24i)8-s + (0.966 + 0.215i)9-s + (−5.01 − 3.87i)10-s + (−7.78 − 4.36i)11-s + (4.09 + 3.66i)12-s + (18.9 + 9.72i)13-s + (15.9 − 4.16i)14-s + (−4.03 − 11.8i)15-s + (1.43 + 4.21i)16-s + (4.96 − 8.84i)17-s + ⋯ |
L(s) = 1 | + (0.327 + 0.637i)2-s + (−0.103 + 0.937i)3-s + (0.282 − 0.394i)4-s + (−0.799 + 0.374i)5-s + (−0.631 + 0.241i)6-s + (0.356 − 1.60i)7-s + (1.05 + 0.155i)8-s + (0.107 + 0.0239i)9-s + (−0.501 − 0.387i)10-s + (−0.707 − 0.397i)11-s + (0.341 + 0.305i)12-s + (1.45 + 0.748i)13-s + (1.13 − 0.297i)14-s + (−0.269 − 0.788i)15-s + (0.0899 + 0.263i)16-s + (0.291 − 0.520i)17-s + ⋯ |
Λ(s)=(=(431s/2ΓC(s)L(s)(0.597−0.802i)Λ(3−s)
Λ(s)=(=(431s/2ΓC(s+1)L(s)(0.597−0.802i)Λ(1−s)
Degree: |
2 |
Conductor: |
431
|
Sign: |
0.597−0.802i
|
Analytic conductor: |
11.7438 |
Root analytic conductor: |
3.42693 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ431(367,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 431, ( :1), 0.597−0.802i)
|
Particular Values
L(23) |
≈ |
2.00982+1.00925i |
L(21) |
≈ |
2.00982+1.00925i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 431 | 1+(313.+295.i)T |
good | 2 | 1+(−0.655−1.27i)T+(−2.32+3.25i)T2 |
| 3 | 1+(0.309−2.81i)T+(−8.78−1.95i)T2 |
| 5 | 1+(3.99−1.87i)T+(15.9−19.2i)T2 |
| 7 | 1+(−2.49+11.2i)T+(−44.3−20.7i)T2 |
| 11 | 1+(7.78+4.36i)T+(63.0+103.i)T2 |
| 13 | 1+(−18.9−9.72i)T+(98.3+137.i)T2 |
| 17 | 1+(−4.96+8.84i)T+(−150.−246.i)T2 |
| 19 | 1+(−23.6−11.0i)T+(230.+277.i)T2 |
| 23 | 1+(0.0572−0.0593i)T+(−19.3−528.i)T2 |
| 29 | 1+(3.01+4.22i)T+(−271.+795.i)T2 |
| 31 | 1+(−8.48+22.1i)T+(−715.−641.i)T2 |
| 37 | 1+(−16.0+4.20i)T+(1.19e3−670.i)T2 |
| 41 | 1+(17.0+49.9i)T+(−1.33e3+1.02e3i)T2 |
| 43 | 1+(−30.6−39.6i)T+(−467.+1.78e3i)T2 |
| 47 | 1+(−5.84−79.8i)T+(−2.18e3+321.i)T2 |
| 53 | 1+(31.4+2.30i)T+(2.77e3+408.i)T2 |
| 59 | 1+(17.8+34.6i)T+(−2.02e3+2.83e3i)T2 |
| 61 | 1+(−25.2+59.3i)T+(−2.58e3−2.67e3i)T2 |
| 67 | 1+(−41.9+10.9i)T+(3.91e3−2.19e3i)T2 |
| 71 | 1+(−5.78−79.0i)T+(−4.98e3+733.i)T2 |
| 73 | 1+(−32.4+49.0i)T+(−2.08e3−4.90e3i)T2 |
| 79 | 1+(−0.563−1.87i)T+(−5.20e3+3.44e3i)T2 |
| 83 | 1+(27.0+2.97i)T+(6.72e3+1.49e3i)T2 |
| 89 | 1+(45.7+8.44i)T+(7.39e3+2.82e3i)T2 |
| 97 | 1+(−175.−52.8i)T+(7.84e3+5.19e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.11498716096385543396195568249, −10.35580356778599808445011139929, −9.518425888897109157191242350004, −7.80992832771081798070466132773, −7.51797505351322667416812988050, −6.38162071102281087456244906017, −5.20646517341087110923733835250, −4.21992200847619011892767436596, −3.57784774904295415000032410493, −1.15891738718577041216107493835,
1.24762802872776713330514184796, 2.46491847098501666984979577588, 3.57039396364023630224419536229, 4.95193236338569908079369303210, 6.02151366123723915826499177017, 7.29237400532503913817910122881, 8.075723180138593860047502875847, 8.629683083065234740912829289843, 10.15486812796991951007780107848, 11.30249383086948403854533194677