L(s) = 1 | + (−0.419 − 0.816i)2-s + (0.503 − 4.57i)3-s + (1.83 − 2.56i)4-s + (−5.01 + 2.34i)5-s + (−3.94 + 1.50i)6-s + (1.85 − 8.34i)7-s + (−6.49 − 0.956i)8-s + (−11.8 − 2.64i)9-s + (4.01 + 3.10i)10-s + (−5.44 − 3.05i)11-s + (−10.8 − 9.69i)12-s + (5.77 + 2.96i)13-s + (−7.59 + 1.98i)14-s + (8.22 + 24.0i)15-s + (−2.13 − 6.24i)16-s + (−9.26 + 16.5i)17-s + ⋯ |
L(s) = 1 | + (−0.209 − 0.408i)2-s + (0.167 − 1.52i)3-s + (0.459 − 0.642i)4-s + (−1.00 + 0.469i)5-s + (−0.657 + 0.251i)6-s + (0.265 − 1.19i)7-s + (−0.812 − 0.119i)8-s + (−1.32 − 0.294i)9-s + (0.401 + 0.310i)10-s + (−0.494 − 0.277i)11-s + (−0.901 − 0.807i)12-s + (0.444 + 0.228i)13-s + (−0.542 + 0.141i)14-s + (0.548 + 1.60i)15-s + (−0.133 − 0.390i)16-s + (−0.545 + 0.971i)17-s + ⋯ |
Λ(s)=(=(431s/2ΓC(s)L(s)(−0.500−0.865i)Λ(3−s)
Λ(s)=(=(431s/2ΓC(s+1)L(s)(−0.500−0.865i)Λ(1−s)
Degree: |
2 |
Conductor: |
431
|
Sign: |
−0.500−0.865i
|
Analytic conductor: |
11.7438 |
Root analytic conductor: |
3.42693 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ431(367,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 431, ( :1), −0.500−0.865i)
|
Particular Values
L(23) |
≈ |
0.497299+0.861686i |
L(21) |
≈ |
0.497299+0.861686i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 431 | 1+(395.−171.i)T |
good | 2 | 1+(0.419+0.816i)T+(−2.32+3.25i)T2 |
| 3 | 1+(−0.503+4.57i)T+(−8.78−1.95i)T2 |
| 5 | 1+(5.01−2.34i)T+(15.9−19.2i)T2 |
| 7 | 1+(−1.85+8.34i)T+(−44.3−20.7i)T2 |
| 11 | 1+(5.44+3.05i)T+(63.0+103.i)T2 |
| 13 | 1+(−5.77−2.96i)T+(98.3+137.i)T2 |
| 17 | 1+(9.26−16.5i)T+(−150.−246.i)T2 |
| 19 | 1+(−13.6−6.39i)T+(230.+277.i)T2 |
| 23 | 1+(−14.2+14.8i)T+(−19.3−528.i)T2 |
| 29 | 1+(27.8+38.9i)T+(−271.+795.i)T2 |
| 31 | 1+(−5.59+14.6i)T+(−715.−641.i)T2 |
| 37 | 1+(−40.1+10.4i)T+(1.19e3−670.i)T2 |
| 41 | 1+(−11.4−33.6i)T+(−1.33e3+1.02e3i)T2 |
| 43 | 1+(−15.3−19.9i)T+(−467.+1.78e3i)T2 |
| 47 | 1+(−1.80−24.6i)T+(−2.18e3+321.i)T2 |
| 53 | 1+(54.5+3.98i)T+(2.77e3+408.i)T2 |
| 59 | 1+(23.8+46.3i)T+(−2.02e3+2.83e3i)T2 |
| 61 | 1+(17.3−40.8i)T+(−2.58e3−2.67e3i)T2 |
| 67 | 1+(11.5−3.02i)T+(3.91e3−2.19e3i)T2 |
| 71 | 1+(4.96+67.7i)T+(−4.98e3+733.i)T2 |
| 73 | 1+(−29.8+45.0i)T+(−2.08e3−4.90e3i)T2 |
| 79 | 1+(−20.9−69.4i)T+(−5.20e3+3.44e3i)T2 |
| 83 | 1+(37.5+4.13i)T+(6.72e3+1.49e3i)T2 |
| 89 | 1+(−57.9−10.6i)T+(7.39e3+2.82e3i)T2 |
| 97 | 1+(44.2+13.3i)T+(7.84e3+5.19e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.85039614011264403238531078829, −9.521420017147103690302323657144, −8.014710838496338964034065098696, −7.67901382870521426884651558746, −6.71757346241054304041074598313, −5.99660512521659565195538918586, −4.14286249312453269678193159210, −2.83210303467570236739941426198, −1.52139626717477113027983122977, −0.44245067079298002892072625836,
2.73857441789454484382047152202, 3.63249306277537770288436100763, 4.81858497440193107859139622322, 5.55985753653647814566614383373, 7.17041203278742969471126459191, 8.075914199964639838915809882631, 8.961095280024505664791628560485, 9.299360450113093874379410834869, 10.79457528164002130161054911614, 11.46630354294182938352027668414