L(s) = 1 | + (−0.0737 − 1.41i)2-s + (1.70 + 0.554i)3-s + (−1.98 + 0.208i)4-s + (−2.39 + 1.74i)5-s + (0.656 − 2.44i)6-s + (−0.815 − 2.51i)7-s + (0.440 + 2.79i)8-s + (0.174 + 0.126i)9-s + (2.63 + 3.26i)10-s + (1.40 + 3.00i)11-s + (−3.50 − 0.747i)12-s + (1.39 − 1.92i)13-s + (−3.48 + 1.33i)14-s + (−5.05 + 1.64i)15-s + (3.91 − 0.828i)16-s + (0.468 + 0.644i)17-s + ⋯ |
L(s) = 1 | + (−0.0521 − 0.998i)2-s + (0.984 + 0.319i)3-s + (−0.994 + 0.104i)4-s + (−1.07 + 0.779i)5-s + (0.268 − 0.999i)6-s + (−0.308 − 0.948i)7-s + (0.155 + 0.987i)8-s + (0.0580 + 0.0421i)9-s + (0.834 + 1.03i)10-s + (0.425 + 0.905i)11-s + (−1.01 − 0.215i)12-s + (0.388 − 0.534i)13-s + (−0.931 + 0.357i)14-s + (−1.30 + 0.424i)15-s + (0.978 − 0.207i)16-s + (0.113 + 0.156i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 44 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.708 + 0.705i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 44 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.708 + 0.705i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.749457 - 0.309318i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.749457 - 0.309318i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0737 + 1.41i)T \) |
| 11 | \( 1 + (-1.40 - 3.00i)T \) |
good | 3 | \( 1 + (-1.70 - 0.554i)T + (2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (2.39 - 1.74i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (0.815 + 2.51i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-1.39 + 1.92i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-0.468 - 0.644i)T + (-5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.624 + 1.92i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 2.61iT - 23T^{2} \) |
| 29 | \( 1 + (1.08 - 0.351i)T + (23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (3.51 - 4.84i)T + (-9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.69 - 8.30i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (9.28 + 3.01i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 6.14T + 43T^{2} \) |
| 47 | \( 1 + (-3.31 - 1.07i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-6.63 - 4.82i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.712 + 0.231i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (3.71 + 5.11i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 5.40iT - 67T^{2} \) |
| 71 | \( 1 + (2.56 + 3.53i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.845 + 0.274i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (2.17 + 1.58i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (12.1 - 8.85i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 4.25T + 89T^{2} \) |
| 97 | \( 1 + (5.92 + 4.30i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.39530442549097393334868948324, −14.56638391136480686208676572514, −13.54227936732645760471761231135, −12.16800633594278936353688588773, −10.91760408767535257154984502741, −9.924465828474748225584054276566, −8.554776870484596482306572139424, −7.27963159009397202645305742803, −4.13958081293968062323330834959, −3.16150572257945797452774858010,
3.77428715166864530891938463609, 5.73304578858492835897105790577, 7.57628434250880428178986628082, 8.590854788380287971066836602559, 9.162463057963504090476840031582, 11.66884408491895864191720218740, 12.92563757874377212582111775879, 13.99060692433947901166954512860, 15.04525443891162860778575257120, 16.02196323579188038125225044186