Properties

Label 2-440-1.1-c5-0-34
Degree $2$
Conductor $440$
Sign $1$
Analytic cond. $70.5688$
Root an. cond. $8.40052$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 23·3-s + 25·5-s + 211·7-s + 286·9-s + 121·11-s + 26·13-s + 575·15-s − 407·17-s + 1.78e3·19-s + 4.85e3·21-s − 6·23-s + 625·25-s + 989·27-s − 2.38e3·29-s + 9.45e3·31-s + 2.78e3·33-s + 5.27e3·35-s − 6.91e3·37-s + 598·39-s − 9.77e3·41-s + 3.10e3·43-s + 7.15e3·45-s − 1.42e4·47-s + 2.77e4·49-s − 9.36e3·51-s − 1.86e4·53-s + 3.02e3·55-s + ⋯
L(s)  = 1  + 1.47·3-s + 0.447·5-s + 1.62·7-s + 1.17·9-s + 0.301·11-s + 0.0426·13-s + 0.659·15-s − 0.341·17-s + 1.13·19-s + 2.40·21-s − 0.00236·23-s + 1/5·25-s + 0.261·27-s − 0.527·29-s + 1.76·31-s + 0.444·33-s + 0.727·35-s − 0.830·37-s + 0.0629·39-s − 0.908·41-s + 0.256·43-s + 0.526·45-s − 0.943·47-s + 1.64·49-s − 0.503·51-s − 0.912·53-s + 0.134·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(440\)    =    \(2^{3} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(70.5688\)
Root analytic conductor: \(8.40052\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 440,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(5.311537258\)
\(L(\frac12)\) \(\approx\) \(5.311537258\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - p^{2} T \)
11 \( 1 - p^{2} T \)
good3 \( 1 - 23 T + p^{5} T^{2} \)
7 \( 1 - 211 T + p^{5} T^{2} \)
13 \( 1 - 2 p T + p^{5} T^{2} \)
17 \( 1 + 407 T + p^{5} T^{2} \)
19 \( 1 - 1789 T + p^{5} T^{2} \)
23 \( 1 + 6 T + p^{5} T^{2} \)
29 \( 1 + 2387 T + p^{5} T^{2} \)
31 \( 1 - 9453 T + p^{5} T^{2} \)
37 \( 1 + 6917 T + p^{5} T^{2} \)
41 \( 1 + 9774 T + p^{5} T^{2} \)
43 \( 1 - 3108 T + p^{5} T^{2} \)
47 \( 1 + 14290 T + p^{5} T^{2} \)
53 \( 1 + 18665 T + p^{5} T^{2} \)
59 \( 1 - 36646 T + p^{5} T^{2} \)
61 \( 1 + 22945 T + p^{5} T^{2} \)
67 \( 1 - 35848 T + p^{5} T^{2} \)
71 \( 1 - 16647 T + p^{5} T^{2} \)
73 \( 1 + 34642 T + p^{5} T^{2} \)
79 \( 1 - 20554 T + p^{5} T^{2} \)
83 \( 1 - 7674 T + p^{5} T^{2} \)
89 \( 1 + 1111 p T + p^{5} T^{2} \)
97 \( 1 - 55764 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.09405335402369317229011225089, −9.264345873612174735494058124536, −8.397898461653583449554085284599, −7.913183398574320457725525101521, −6.86484878389279693177263196831, −5.36703887888344359758437728356, −4.41194922639604512638898655282, −3.20771176597360810875101133196, −2.10139879047337931195073853998, −1.28486874002085073181358472049, 1.28486874002085073181358472049, 2.10139879047337931195073853998, 3.20771176597360810875101133196, 4.41194922639604512638898655282, 5.36703887888344359758437728356, 6.86484878389279693177263196831, 7.913183398574320457725525101521, 8.397898461653583449554085284599, 9.264345873612174735494058124536, 10.09405335402369317229011225089

Graph of the $Z$-function along the critical line