L(s) = 1 | − 2·5-s − 7-s − 3·9-s + 4·11-s − 2·13-s − 6·17-s − 8·19-s − 25-s − 6·29-s + 8·31-s + 2·35-s + 2·37-s + 2·41-s + 4·43-s + 6·45-s − 8·47-s + 49-s − 6·53-s − 8·55-s + 6·61-s + 3·63-s + 4·65-s + 4·67-s − 8·71-s + 10·73-s − 4·77-s + 16·79-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 0.377·7-s − 9-s + 1.20·11-s − 0.554·13-s − 1.45·17-s − 1.83·19-s − 1/5·25-s − 1.11·29-s + 1.43·31-s + 0.338·35-s + 0.328·37-s + 0.312·41-s + 0.609·43-s + 0.894·45-s − 1.16·47-s + 1/7·49-s − 0.824·53-s − 1.07·55-s + 0.768·61-s + 0.377·63-s + 0.496·65-s + 0.488·67-s − 0.949·71-s + 1.17·73-s − 0.455·77-s + 1.80·79-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(448s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+T |
good | 3 | 1+pT2 |
| 5 | 1+2T+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1+8T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1−8T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+pT2 |
| 61 | 1−6T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1+8T+pT2 |
| 73 | 1−10T+pT2 |
| 79 | 1−16T+pT2 |
| 83 | 1+8T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1+6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.95242742749570979564901530187, −9.609035860411891137058317154686, −8.773870329302691374695991117300, −8.056242270008326333596348707107, −6.78746217059840482908609994194, −6.15054397459112152814277916997, −4.58367495132727840614913978641, −3.77515777589665000060106383714, −2.35911554344998475560129433401, 0,
2.35911554344998475560129433401, 3.77515777589665000060106383714, 4.58367495132727840614913978641, 6.15054397459112152814277916997, 6.78746217059840482908609994194, 8.056242270008326333596348707107, 8.773870329302691374695991117300, 9.609035860411891137058317154686, 10.95242742749570979564901530187