L(s) = 1 | − 2·5-s − 7-s − 3·9-s + 4·11-s − 2·13-s − 6·17-s − 8·19-s − 25-s − 6·29-s + 8·31-s + 2·35-s + 2·37-s + 2·41-s + 4·43-s + 6·45-s − 8·47-s + 49-s − 6·53-s − 8·55-s + 6·61-s + 3·63-s + 4·65-s + 4·67-s − 8·71-s + 10·73-s − 4·77-s + 16·79-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 0.377·7-s − 9-s + 1.20·11-s − 0.554·13-s − 1.45·17-s − 1.83·19-s − 1/5·25-s − 1.11·29-s + 1.43·31-s + 0.338·35-s + 0.328·37-s + 0.312·41-s + 0.609·43-s + 0.894·45-s − 1.16·47-s + 1/7·49-s − 0.824·53-s − 1.07·55-s + 0.768·61-s + 0.377·63-s + 0.496·65-s + 0.488·67-s − 0.949·71-s + 1.17·73-s − 0.455·77-s + 1.80·79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + T \) |
good | 3 | \( 1 + p T^{2} \) |
| 5 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 - 4 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 + 8 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + 6 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 - 6 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 - 10 T + p T^{2} \) |
| 79 | \( 1 - 16 T + p T^{2} \) |
| 83 | \( 1 + 8 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 + 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95242742749570979564901530187, −9.609035860411891137058317154686, −8.773870329302691374695991117300, −8.056242270008326333596348707107, −6.78746217059840482908609994194, −6.15054397459112152814277916997, −4.58367495132727840614913978641, −3.77515777589665000060106383714, −2.35911554344998475560129433401, 0,
2.35911554344998475560129433401, 3.77515777589665000060106383714, 4.58367495132727840614913978641, 6.15054397459112152814277916997, 6.78746217059840482908609994194, 8.056242270008326333596348707107, 8.773870329302691374695991117300, 9.609035860411891137058317154686, 10.95242742749570979564901530187