L(s) = 1 | + (4.79 − 4.79i)3-s + (2.04 − 2.04i)5-s + (−13.3 + 12.8i)7-s − 19.0i·9-s + (−34.5 + 34.5i)11-s + (−7.32 − 7.32i)13-s − 19.6i·15-s + 133. i·17-s + (13.6 − 13.6i)19-s + (−2.69 + 125. i)21-s − 129.·23-s + 116. i·25-s + (38.2 + 38.2i)27-s + (85.7 − 85.7i)29-s − 239.·31-s + ⋯ |
L(s) = 1 | + (0.923 − 0.923i)3-s + (0.183 − 0.183i)5-s + (−0.722 + 0.691i)7-s − 0.704i·9-s + (−0.947 + 0.947i)11-s + (−0.156 − 0.156i)13-s − 0.337i·15-s + 1.90i·17-s + (0.165 − 0.165i)19-s + (−0.0280 + 1.30i)21-s − 1.17·23-s + 0.933i·25-s + (0.272 + 0.272i)27-s + (0.549 − 0.549i)29-s − 1.38·31-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)(0.0269−0.999i)Λ(4−s)
Λ(s)=(=(448s/2ΓC(s+3/2)L(s)(0.0269−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
448
= 26⋅7
|
Sign: |
0.0269−0.999i
|
Analytic conductor: |
26.4328 |
Root analytic conductor: |
5.14128 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ448(335,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 448, ( :3/2), 0.0269−0.999i)
|
Particular Values
L(2) |
≈ |
1.312640044 |
L(21) |
≈ |
1.312640044 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(13.3−12.8i)T |
good | 3 | 1+(−4.79+4.79i)T−27iT2 |
| 5 | 1+(−2.04+2.04i)T−125iT2 |
| 11 | 1+(34.5−34.5i)T−1.33e3iT2 |
| 13 | 1+(7.32+7.32i)T+2.19e3iT2 |
| 17 | 1−133.iT−4.91e3T2 |
| 19 | 1+(−13.6+13.6i)T−6.85e3iT2 |
| 23 | 1+129.T+1.21e4T2 |
| 29 | 1+(−85.7+85.7i)T−2.43e4iT2 |
| 31 | 1+239.T+2.97e4T2 |
| 37 | 1+(50.7+50.7i)T+5.06e4iT2 |
| 41 | 1−118.T+6.89e4T2 |
| 43 | 1+(−75.4+75.4i)T−7.95e4iT2 |
| 47 | 1+169.T+1.03e5T2 |
| 53 | 1+(−482.−482.i)T+1.48e5iT2 |
| 59 | 1+(285.+285.i)T+2.05e5iT2 |
| 61 | 1+(313.+313.i)T+2.26e5iT2 |
| 67 | 1+(−58.2−58.2i)T+3.00e5iT2 |
| 71 | 1−374.T+3.57e5T2 |
| 73 | 1−610.T+3.89e5T2 |
| 79 | 1+460.iT−4.93e5T2 |
| 83 | 1+(875.−875.i)T−5.71e5iT2 |
| 89 | 1+633.T+7.04e5T2 |
| 97 | 1−946.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.75693299054901095285444095094, −9.855197971114826224853166091399, −8.972950148497842853764088850987, −8.092307078938678598665513165559, −7.43096483506904223638606777507, −6.31845339661501271025994028451, −5.35275721410005966676253186220, −3.76879594750194334726074498541, −2.50364474796370093104980852190, −1.75352328209435230274401789300,
0.34387728702699672621786074023, 2.62294181190414352673073012814, 3.33903203546686801120450918206, 4.39913309126112751627191001369, 5.57982172293140895359950382624, 6.84583198064851943439785072054, 7.84393114925619760861459518231, 8.805027103640597731720723790986, 9.685127180234239825726943108466, 10.19362585649302882391907748313