Properties

Label 448.4.j.b.335.37
Level $448$
Weight $4$
Character 448.335
Analytic conductor $26.433$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,4,Mod(111,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.111");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 448.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.4328556826\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(44\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 335.37
Character \(\chi\) \(=\) 448.335
Dual form 448.4.j.b.111.37

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.79702 - 4.79702i) q^{3} +(2.04624 - 2.04624i) q^{5} +(-13.3740 + 12.8115i) q^{7} -19.0229i q^{9} +(-34.5515 + 34.5515i) q^{11} +(-7.32563 - 7.32563i) q^{13} -19.6317i q^{15} +133.707i q^{17} +(13.6735 - 13.6735i) q^{19} +(-2.69841 + 125.613i) q^{21} -129.773 q^{23} +116.626i q^{25} +(38.2664 + 38.2664i) q^{27} +(85.7909 - 85.7909i) q^{29} -239.073 q^{31} +331.489i q^{33} +(-1.15105 + 53.5820i) q^{35} +(-50.7975 - 50.7975i) q^{37} -70.2824 q^{39} +118.276 q^{41} +(75.4750 - 75.4750i) q^{43} +(-38.9254 - 38.9254i) q^{45} -169.043 q^{47} +(14.7299 - 342.684i) q^{49} +(641.398 + 641.398i) q^{51} +(482.264 + 482.264i) q^{53} +141.401i q^{55} -131.184i q^{57} +(-285.231 - 285.231i) q^{59} +(-313.070 - 313.070i) q^{61} +(243.712 + 254.413i) q^{63} -29.9800 q^{65} +(58.2711 + 58.2711i) q^{67} +(-622.523 + 622.523i) q^{69} +374.109 q^{71} +610.003 q^{73} +(559.457 + 559.457i) q^{75} +(19.4359 - 904.751i) q^{77} -460.899i q^{79} +880.748 q^{81} +(-875.405 + 875.405i) q^{83} +(273.598 + 273.598i) q^{85} -823.082i q^{87} -633.231 q^{89} +(191.826 + 4.12080i) q^{91} +(-1146.84 + 1146.84i) q^{93} -55.9584i q^{95} +946.138i q^{97} +(657.269 + 657.269i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{7} - 112 q^{11} + 52 q^{21} - 160 q^{23} + 528 q^{29} - 476 q^{35} - 896 q^{37} + 8 q^{39} - 40 q^{43} - 1376 q^{49} - 1504 q^{51} - 1560 q^{53} - 8 q^{65} - 648 q^{67} + 456 q^{71} + 292 q^{77}+ \cdots - 7592 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.79702 4.79702i 0.923188 0.923188i −0.0740657 0.997253i \(-0.523597\pi\)
0.997253 + 0.0740657i \(0.0235974\pi\)
\(4\) 0 0
\(5\) 2.04624 2.04624i 0.183021 0.183021i −0.609650 0.792671i \(-0.708690\pi\)
0.792671 + 0.609650i \(0.208690\pi\)
\(6\) 0 0
\(7\) −13.3740 + 12.8115i −0.722130 + 0.691757i
\(8\) 0 0
\(9\) 19.0229i 0.704551i
\(10\) 0 0
\(11\) −34.5515 + 34.5515i −0.947061 + 0.947061i −0.998668 0.0516064i \(-0.983566\pi\)
0.0516064 + 0.998668i \(0.483566\pi\)
\(12\) 0 0
\(13\) −7.32563 7.32563i −0.156290 0.156290i 0.624631 0.780920i \(-0.285250\pi\)
−0.780920 + 0.624631i \(0.785250\pi\)
\(14\) 0 0
\(15\) 19.6317i 0.337926i
\(16\) 0 0
\(17\) 133.707i 1.90758i 0.300477 + 0.953789i \(0.402854\pi\)
−0.300477 + 0.953789i \(0.597146\pi\)
\(18\) 0 0
\(19\) 13.6735 13.6735i 0.165100 0.165100i −0.619722 0.784822i \(-0.712754\pi\)
0.784822 + 0.619722i \(0.212754\pi\)
\(20\) 0 0
\(21\) −2.69841 + 125.613i −0.0280401 + 1.30528i
\(22\) 0 0
\(23\) −129.773 −1.17650 −0.588250 0.808679i \(-0.700183\pi\)
−0.588250 + 0.808679i \(0.700183\pi\)
\(24\) 0 0
\(25\) 116.626i 0.933006i
\(26\) 0 0
\(27\) 38.2664 + 38.2664i 0.272755 + 0.272755i
\(28\) 0 0
\(29\) 85.7909 85.7909i 0.549344 0.549344i −0.376907 0.926251i \(-0.623012\pi\)
0.926251 + 0.376907i \(0.123012\pi\)
\(30\) 0 0
\(31\) −239.073 −1.38512 −0.692560 0.721360i \(-0.743517\pi\)
−0.692560 + 0.721360i \(0.743517\pi\)
\(32\) 0 0
\(33\) 331.489i 1.74863i
\(34\) 0 0
\(35\) −1.15105 + 53.5820i −0.00555893 + 0.258772i
\(36\) 0 0
\(37\) −50.7975 50.7975i −0.225704 0.225704i 0.585191 0.810895i \(-0.301019\pi\)
−0.810895 + 0.585191i \(0.801019\pi\)
\(38\) 0 0
\(39\) −70.2824 −0.288569
\(40\) 0 0
\(41\) 118.276 0.450527 0.225264 0.974298i \(-0.427676\pi\)
0.225264 + 0.974298i \(0.427676\pi\)
\(42\) 0 0
\(43\) 75.4750 75.4750i 0.267671 0.267671i −0.560490 0.828161i \(-0.689387\pi\)
0.828161 + 0.560490i \(0.189387\pi\)
\(44\) 0 0
\(45\) −38.9254 38.9254i −0.128948 0.128948i
\(46\) 0 0
\(47\) −169.043 −0.524625 −0.262313 0.964983i \(-0.584485\pi\)
−0.262313 + 0.964983i \(0.584485\pi\)
\(48\) 0 0
\(49\) 14.7299 342.684i 0.0429442 0.999077i
\(50\) 0 0
\(51\) 641.398 + 641.398i 1.76105 + 1.76105i
\(52\) 0 0
\(53\) 482.264 + 482.264i 1.24989 + 1.24989i 0.955769 + 0.294118i \(0.0950257\pi\)
0.294118 + 0.955769i \(0.404974\pi\)
\(54\) 0 0
\(55\) 141.401i 0.346665i
\(56\) 0 0
\(57\) 131.184i 0.304837i
\(58\) 0 0
\(59\) −285.231 285.231i −0.629389 0.629389i 0.318525 0.947914i \(-0.396812\pi\)
−0.947914 + 0.318525i \(0.896812\pi\)
\(60\) 0 0
\(61\) −313.070 313.070i −0.657124 0.657124i 0.297575 0.954699i \(-0.403822\pi\)
−0.954699 + 0.297575i \(0.903822\pi\)
\(62\) 0 0
\(63\) 243.712 + 254.413i 0.487378 + 0.508778i
\(64\) 0 0
\(65\) −29.9800 −0.0572086
\(66\) 0 0
\(67\) 58.2711 + 58.2711i 0.106253 + 0.106253i 0.758235 0.651982i \(-0.226062\pi\)
−0.651982 + 0.758235i \(0.726062\pi\)
\(68\) 0 0
\(69\) −622.523 + 622.523i −1.08613 + 1.08613i
\(70\) 0 0
\(71\) 374.109 0.625331 0.312666 0.949863i \(-0.398778\pi\)
0.312666 + 0.949863i \(0.398778\pi\)
\(72\) 0 0
\(73\) 610.003 0.978020 0.489010 0.872278i \(-0.337358\pi\)
0.489010 + 0.872278i \(0.337358\pi\)
\(74\) 0 0
\(75\) 559.457 + 559.457i 0.861340 + 0.861340i
\(76\) 0 0
\(77\) 19.4359 904.751i 0.0287652 1.33904i
\(78\) 0 0
\(79\) 460.899i 0.656395i −0.944609 0.328198i \(-0.893559\pi\)
0.944609 0.328198i \(-0.106441\pi\)
\(80\) 0 0
\(81\) 880.748 1.20816
\(82\) 0 0
\(83\) −875.405 + 875.405i −1.15769 + 1.15769i −0.172717 + 0.984971i \(0.555255\pi\)
−0.984971 + 0.172717i \(0.944745\pi\)
\(84\) 0 0
\(85\) 273.598 + 273.598i 0.349128 + 0.349128i
\(86\) 0 0
\(87\) 823.082i 1.01430i
\(88\) 0 0
\(89\) −633.231 −0.754184 −0.377092 0.926176i \(-0.623076\pi\)
−0.377092 + 0.926176i \(0.623076\pi\)
\(90\) 0 0
\(91\) 191.826 + 4.12080i 0.220976 + 0.00474700i
\(92\) 0 0
\(93\) −1146.84 + 1146.84i −1.27873 + 1.27873i
\(94\) 0 0
\(95\) 55.9584i 0.0604338i
\(96\) 0 0
\(97\) 946.138i 0.990368i 0.868788 + 0.495184i \(0.164899\pi\)
−0.868788 + 0.495184i \(0.835101\pi\)
\(98\) 0 0
\(99\) 657.269 + 657.269i 0.667253 + 0.667253i
\(100\) 0 0
\(101\) 141.100 141.100i 0.139010 0.139010i −0.634178 0.773187i \(-0.718661\pi\)
0.773187 + 0.634178i \(0.218661\pi\)
\(102\) 0 0
\(103\) 891.445i 0.852784i 0.904539 + 0.426392i \(0.140216\pi\)
−0.904539 + 0.426392i \(0.859784\pi\)
\(104\) 0 0
\(105\) 251.512 + 262.556i 0.233763 + 0.244027i
\(106\) 0 0
\(107\) 727.560 727.560i 0.657345 0.657345i −0.297406 0.954751i \(-0.596122\pi\)
0.954751 + 0.297406i \(0.0961215\pi\)
\(108\) 0 0
\(109\) −1136.70 + 1136.70i −0.998867 + 0.998867i −0.999999 0.00113245i \(-0.999640\pi\)
0.00113245 + 0.999999i \(0.499640\pi\)
\(110\) 0 0
\(111\) −487.353 −0.416735
\(112\) 0 0
\(113\) −556.606 −0.463373 −0.231686 0.972791i \(-0.574424\pi\)
−0.231686 + 0.972791i \(0.574424\pi\)
\(114\) 0 0
\(115\) −265.546 + 265.546i −0.215325 + 0.215325i
\(116\) 0 0
\(117\) −139.355 + 139.355i −0.110114 + 0.110114i
\(118\) 0 0
\(119\) −1713.00 1788.21i −1.31958 1.37752i
\(120\) 0 0
\(121\) 1056.61i 0.793849i
\(122\) 0 0
\(123\) 567.373 567.373i 0.415921 0.415921i
\(124\) 0 0
\(125\) 494.425 + 494.425i 0.353781 + 0.353781i
\(126\) 0 0
\(127\) 1588.68i 1.11002i 0.831843 + 0.555011i \(0.187286\pi\)
−0.831843 + 0.555011i \(0.812714\pi\)
\(128\) 0 0
\(129\) 724.111i 0.494220i
\(130\) 0 0
\(131\) −1500.21 + 1500.21i −1.00057 + 1.00057i −0.000565274 1.00000i \(0.500180\pi\)
−1.00000 0.000565274i \(0.999820\pi\)
\(132\) 0 0
\(133\) −7.69157 + 358.047i −0.00501461 + 0.233433i
\(134\) 0 0
\(135\) 156.605 0.0998399
\(136\) 0 0
\(137\) 2259.10i 1.40882i −0.709795 0.704408i \(-0.751212\pi\)
0.709795 0.704408i \(-0.248788\pi\)
\(138\) 0 0
\(139\) 2145.82 + 2145.82i 1.30940 + 1.30940i 0.921850 + 0.387547i \(0.126677\pi\)
0.387547 + 0.921850i \(0.373323\pi\)
\(140\) 0 0
\(141\) −810.901 + 810.901i −0.484328 + 0.484328i
\(142\) 0 0
\(143\) 506.223 0.296031
\(144\) 0 0
\(145\) 351.098i 0.201083i
\(146\) 0 0
\(147\) −1573.20 1714.52i −0.882690 0.961982i
\(148\) 0 0
\(149\) −1085.99 1085.99i −0.597100 0.597100i 0.342440 0.939540i \(-0.388747\pi\)
−0.939540 + 0.342440i \(0.888747\pi\)
\(150\) 0 0
\(151\) −257.765 −0.138918 −0.0694590 0.997585i \(-0.522127\pi\)
−0.0694590 + 0.997585i \(0.522127\pi\)
\(152\) 0 0
\(153\) 2543.50 1.34399
\(154\) 0 0
\(155\) −489.200 + 489.200i −0.253507 + 0.253507i
\(156\) 0 0
\(157\) −1532.56 1532.56i −0.779053 0.779053i 0.200617 0.979670i \(-0.435705\pi\)
−0.979670 + 0.200617i \(0.935705\pi\)
\(158\) 0 0
\(159\) 4626.86 2.30776
\(160\) 0 0
\(161\) 1735.59 1662.59i 0.849586 0.813852i
\(162\) 0 0
\(163\) 177.457 + 177.457i 0.0852729 + 0.0852729i 0.748457 0.663184i \(-0.230795\pi\)
−0.663184 + 0.748457i \(0.730795\pi\)
\(164\) 0 0
\(165\) 678.306 + 678.306i 0.320037 + 0.320037i
\(166\) 0 0
\(167\) 1722.29i 0.798054i −0.916939 0.399027i \(-0.869348\pi\)
0.916939 0.399027i \(-0.130652\pi\)
\(168\) 0 0
\(169\) 2089.67i 0.951147i
\(170\) 0 0
\(171\) −260.108 260.108i −0.116322 0.116322i
\(172\) 0 0
\(173\) 1795.20 + 1795.20i 0.788939 + 0.788939i 0.981320 0.192381i \(-0.0616210\pi\)
−0.192381 + 0.981320i \(0.561621\pi\)
\(174\) 0 0
\(175\) −1494.15 1559.76i −0.645414 0.673752i
\(176\) 0 0
\(177\) −2736.52 −1.16209
\(178\) 0 0
\(179\) 953.910 + 953.910i 0.398316 + 0.398316i 0.877639 0.479323i \(-0.159118\pi\)
−0.479323 + 0.877639i \(0.659118\pi\)
\(180\) 0 0
\(181\) −1780.34 + 1780.34i −0.731114 + 0.731114i −0.970840 0.239727i \(-0.922942\pi\)
0.239727 + 0.970840i \(0.422942\pi\)
\(182\) 0 0
\(183\) −3003.61 −1.21330
\(184\) 0 0
\(185\) −207.888 −0.0826173
\(186\) 0 0
\(187\) −4619.79 4619.79i −1.80659 1.80659i
\(188\) 0 0
\(189\) −1002.03 21.5256i −0.385645 0.00828442i
\(190\) 0 0
\(191\) 2064.00i 0.781916i −0.920409 0.390958i \(-0.872144\pi\)
0.920409 0.390958i \(-0.127856\pi\)
\(192\) 0 0
\(193\) 1142.67 0.426172 0.213086 0.977033i \(-0.431649\pi\)
0.213086 + 0.977033i \(0.431649\pi\)
\(194\) 0 0
\(195\) −143.815 + 143.815i −0.0528143 + 0.0528143i
\(196\) 0 0
\(197\) 837.511 + 837.511i 0.302894 + 0.302894i 0.842145 0.539251i \(-0.181292\pi\)
−0.539251 + 0.842145i \(0.681292\pi\)
\(198\) 0 0
\(199\) 2165.33i 0.771338i −0.922637 0.385669i \(-0.873971\pi\)
0.922637 0.385669i \(-0.126029\pi\)
\(200\) 0 0
\(201\) 559.056 0.196183
\(202\) 0 0
\(203\) −48.2590 + 2246.48i −0.0166853 + 0.776710i
\(204\) 0 0
\(205\) 242.021 242.021i 0.0824561 0.0824561i
\(206\) 0 0
\(207\) 2468.65i 0.828904i
\(208\) 0 0
\(209\) 944.877i 0.312720i
\(210\) 0 0
\(211\) −130.423 130.423i −0.0425531 0.0425531i 0.685510 0.728063i \(-0.259579\pi\)
−0.728063 + 0.685510i \(0.759579\pi\)
\(212\) 0 0
\(213\) 1794.61 1794.61i 0.577298 0.577298i
\(214\) 0 0
\(215\) 308.880i 0.0979789i
\(216\) 0 0
\(217\) 3197.37 3062.89i 1.00024 0.958167i
\(218\) 0 0
\(219\) 2926.20 2926.20i 0.902896 0.902896i
\(220\) 0 0
\(221\) 979.491 979.491i 0.298134 0.298134i
\(222\) 0 0
\(223\) −1221.92 −0.366933 −0.183466 0.983026i \(-0.558732\pi\)
−0.183466 + 0.983026i \(0.558732\pi\)
\(224\) 0 0
\(225\) 2218.56 0.657351
\(226\) 0 0
\(227\) 3515.16 3515.16i 1.02780 1.02780i 0.0281934 0.999602i \(-0.491025\pi\)
0.999602 0.0281934i \(-0.00897542\pi\)
\(228\) 0 0
\(229\) 3345.39 3345.39i 0.965369 0.965369i −0.0340515 0.999420i \(-0.510841\pi\)
0.999420 + 0.0340515i \(0.0108410\pi\)
\(230\) 0 0
\(231\) −4246.88 4433.34i −1.20963 1.26274i
\(232\) 0 0
\(233\) 537.847i 0.151225i −0.997137 0.0756127i \(-0.975909\pi\)
0.997137 0.0756127i \(-0.0240913\pi\)
\(234\) 0 0
\(235\) −345.902 + 345.902i −0.0960177 + 0.0960177i
\(236\) 0 0
\(237\) −2210.95 2210.95i −0.605976 0.605976i
\(238\) 0 0
\(239\) 6403.30i 1.73303i −0.499149 0.866516i \(-0.666354\pi\)
0.499149 0.866516i \(-0.333646\pi\)
\(240\) 0 0
\(241\) 1648.67i 0.440664i −0.975425 0.220332i \(-0.929286\pi\)
0.975425 0.220332i \(-0.0707140\pi\)
\(242\) 0 0
\(243\) 3191.77 3191.77i 0.842603 0.842603i
\(244\) 0 0
\(245\) −671.072 731.354i −0.174993 0.190712i
\(246\) 0 0
\(247\) −200.333 −0.0516069
\(248\) 0 0
\(249\) 8398.68i 2.13753i
\(250\) 0 0
\(251\) 3775.90 + 3775.90i 0.949534 + 0.949534i 0.998786 0.0492528i \(-0.0156840\pi\)
−0.0492528 + 0.998786i \(0.515684\pi\)
\(252\) 0 0
\(253\) 4483.84 4483.84i 1.11422 1.11422i
\(254\) 0 0
\(255\) 2624.91 0.644620
\(256\) 0 0
\(257\) 6959.86i 1.68928i 0.535337 + 0.844638i \(0.320185\pi\)
−0.535337 + 0.844638i \(0.679815\pi\)
\(258\) 0 0
\(259\) 1330.16 + 28.5745i 0.319120 + 0.00685534i
\(260\) 0 0
\(261\) −1631.99 1631.99i −0.387041 0.387041i
\(262\) 0 0
\(263\) 4461.40 1.04602 0.523008 0.852328i \(-0.324810\pi\)
0.523008 + 0.852328i \(0.324810\pi\)
\(264\) 0 0
\(265\) 1973.66 0.457512
\(266\) 0 0
\(267\) −3037.62 + 3037.62i −0.696253 + 0.696253i
\(268\) 0 0
\(269\) −2252.15 2252.15i −0.510469 0.510469i 0.404201 0.914670i \(-0.367550\pi\)
−0.914670 + 0.404201i \(0.867550\pi\)
\(270\) 0 0
\(271\) −6670.05 −1.49512 −0.747559 0.664196i \(-0.768774\pi\)
−0.747559 + 0.664196i \(0.768774\pi\)
\(272\) 0 0
\(273\) 939.960 900.425i 0.208384 0.199620i
\(274\) 0 0
\(275\) −4029.60 4029.60i −0.883614 0.883614i
\(276\) 0 0
\(277\) −1517.50 1517.50i −0.329161 0.329161i 0.523106 0.852267i \(-0.324773\pi\)
−0.852267 + 0.523106i \(0.824773\pi\)
\(278\) 0 0
\(279\) 4547.85i 0.975888i
\(280\) 0 0
\(281\) 559.278i 0.118732i −0.998236 0.0593661i \(-0.981092\pi\)
0.998236 0.0593661i \(-0.0189079\pi\)
\(282\) 0 0
\(283\) −25.8379 25.8379i −0.00542721 0.00542721i 0.704388 0.709815i \(-0.251222\pi\)
−0.709815 + 0.704388i \(0.751222\pi\)
\(284\) 0 0
\(285\) −268.434 268.434i −0.0557917 0.0557917i
\(286\) 0 0
\(287\) −1581.83 + 1515.30i −0.325339 + 0.311655i
\(288\) 0 0
\(289\) −12964.7 −2.63885
\(290\) 0 0
\(291\) 4538.65 + 4538.65i 0.914296 + 0.914296i
\(292\) 0 0
\(293\) −3862.53 + 3862.53i −0.770142 + 0.770142i −0.978131 0.207989i \(-0.933308\pi\)
0.207989 + 0.978131i \(0.433308\pi\)
\(294\) 0 0
\(295\) −1167.30 −0.230383
\(296\) 0 0
\(297\) −2644.33 −0.516631
\(298\) 0 0
\(299\) 950.667 + 950.667i 0.183875 + 0.183875i
\(300\) 0 0
\(301\) −42.4561 + 1976.36i −0.00812999 + 0.378456i
\(302\) 0 0
\(303\) 1353.72i 0.256664i
\(304\) 0 0
\(305\) −1281.23 −0.240535
\(306\) 0 0
\(307\) −2044.42 + 2044.42i −0.380069 + 0.380069i −0.871127 0.491058i \(-0.836610\pi\)
0.491058 + 0.871127i \(0.336610\pi\)
\(308\) 0 0
\(309\) 4276.28 + 4276.28i 0.787279 + 0.787279i
\(310\) 0 0
\(311\) 9371.35i 1.70868i 0.519711 + 0.854342i \(0.326040\pi\)
−0.519711 + 0.854342i \(0.673960\pi\)
\(312\) 0 0
\(313\) −8978.95 −1.62147 −0.810735 0.585413i \(-0.800932\pi\)
−0.810735 + 0.585413i \(0.800932\pi\)
\(314\) 0 0
\(315\) 1019.28 + 21.8962i 0.182318 + 0.00391655i
\(316\) 0 0
\(317\) −1767.75 + 1767.75i −0.313207 + 0.313207i −0.846151 0.532944i \(-0.821086\pi\)
0.532944 + 0.846151i \(0.321086\pi\)
\(318\) 0 0
\(319\) 5928.41i 1.04052i
\(320\) 0 0
\(321\) 6980.25i 1.21371i
\(322\) 0 0
\(323\) 1828.24 + 1828.24i 0.314942 + 0.314942i
\(324\) 0 0
\(325\) 854.357 854.357i 0.145819 0.145819i
\(326\) 0 0
\(327\) 10905.6i 1.84428i
\(328\) 0 0
\(329\) 2260.78 2165.69i 0.378848 0.362913i
\(330\) 0 0
\(331\) −4730.32 + 4730.32i −0.785504 + 0.785504i −0.980754 0.195250i \(-0.937448\pi\)
0.195250 + 0.980754i \(0.437448\pi\)
\(332\) 0 0
\(333\) −966.314 + 966.314i −0.159020 + 0.159020i
\(334\) 0 0
\(335\) 238.473 0.0388931
\(336\) 0 0
\(337\) 1717.91 0.277688 0.138844 0.990314i \(-0.455661\pi\)
0.138844 + 0.990314i \(0.455661\pi\)
\(338\) 0 0
\(339\) −2670.05 + 2670.05i −0.427780 + 0.427780i
\(340\) 0 0
\(341\) 8260.32 8260.32i 1.31179 1.31179i
\(342\) 0 0
\(343\) 4193.30 + 4771.78i 0.660108 + 0.751171i
\(344\) 0 0
\(345\) 2547.66i 0.397570i
\(346\) 0 0
\(347\) 7793.80 7793.80i 1.20574 1.20574i 0.233352 0.972392i \(-0.425031\pi\)
0.972392 0.233352i \(-0.0749695\pi\)
\(348\) 0 0
\(349\) 4211.57 + 4211.57i 0.645960 + 0.645960i 0.952014 0.306054i \(-0.0990088\pi\)
−0.306054 + 0.952014i \(0.599009\pi\)
\(350\) 0 0
\(351\) 560.652i 0.0852574i
\(352\) 0 0
\(353\) 7172.87i 1.08151i 0.841180 + 0.540755i \(0.181862\pi\)
−0.841180 + 0.540755i \(0.818138\pi\)
\(354\) 0 0
\(355\) 765.516 765.516i 0.114449 0.114449i
\(356\) 0 0
\(357\) −16795.4 360.798i −2.48993 0.0534887i
\(358\) 0 0
\(359\) 12810.1 1.88326 0.941630 0.336650i \(-0.109294\pi\)
0.941630 + 0.336650i \(0.109294\pi\)
\(360\) 0 0
\(361\) 6485.07i 0.945484i
\(362\) 0 0
\(363\) −5068.60 5068.60i −0.732872 0.732872i
\(364\) 0 0
\(365\) 1248.21 1248.21i 0.178998 0.178998i
\(366\) 0 0
\(367\) −5502.08 −0.782578 −0.391289 0.920268i \(-0.627971\pi\)
−0.391289 + 0.920268i \(0.627971\pi\)
\(368\) 0 0
\(369\) 2249.95i 0.317419i
\(370\) 0 0
\(371\) −12628.3 271.282i −1.76720 0.0379630i
\(372\) 0 0
\(373\) −5026.12 5026.12i −0.697702 0.697702i 0.266213 0.963914i \(-0.414228\pi\)
−0.963914 + 0.266213i \(0.914228\pi\)
\(374\) 0 0
\(375\) 4743.53 0.653213
\(376\) 0 0
\(377\) −1256.94 −0.171713
\(378\) 0 0
\(379\) −6001.11 + 6001.11i −0.813342 + 0.813342i −0.985133 0.171792i \(-0.945044\pi\)
0.171792 + 0.985133i \(0.445044\pi\)
\(380\) 0 0
\(381\) 7620.96 + 7620.96i 1.02476 + 1.02476i
\(382\) 0 0
\(383\) 12452.4 1.66133 0.830665 0.556773i \(-0.187961\pi\)
0.830665 + 0.556773i \(0.187961\pi\)
\(384\) 0 0
\(385\) −1811.57 1891.11i −0.239808 0.250337i
\(386\) 0 0
\(387\) −1435.75 1435.75i −0.188588 0.188588i
\(388\) 0 0
\(389\) 7568.58 + 7568.58i 0.986483 + 0.986483i 0.999910 0.0134265i \(-0.00427393\pi\)
−0.0134265 + 0.999910i \(0.504274\pi\)
\(390\) 0 0
\(391\) 17351.6i 2.24426i
\(392\) 0 0
\(393\) 14393.1i 1.84742i
\(394\) 0 0
\(395\) −943.111 943.111i −0.120134 0.120134i
\(396\) 0 0
\(397\) −746.476 746.476i −0.0943692 0.0943692i 0.658346 0.752715i \(-0.271256\pi\)
−0.752715 + 0.658346i \(0.771256\pi\)
\(398\) 0 0
\(399\) 1680.66 + 1754.46i 0.210873 + 0.220132i
\(400\) 0 0
\(401\) 8402.79 1.04642 0.523211 0.852203i \(-0.324734\pi\)
0.523211 + 0.852203i \(0.324734\pi\)
\(402\) 0 0
\(403\) 1751.36 + 1751.36i 0.216480 + 0.216480i
\(404\) 0 0
\(405\) 1802.22 1802.22i 0.221119 0.221119i
\(406\) 0 0
\(407\) 3510.26 0.427511
\(408\) 0 0
\(409\) −8430.15 −1.01918 −0.509589 0.860418i \(-0.670203\pi\)
−0.509589 + 0.860418i \(0.670203\pi\)
\(410\) 0 0
\(411\) −10837.0 10837.0i −1.30060 1.30060i
\(412\) 0 0
\(413\) 7468.95 + 160.448i 0.889886 + 0.0191165i
\(414\) 0 0
\(415\) 3582.58i 0.423764i
\(416\) 0 0
\(417\) 20587.1 2.41764
\(418\) 0 0
\(419\) 8672.14 8672.14i 1.01113 1.01113i 0.0111887 0.999937i \(-0.496438\pi\)
0.999937 0.0111887i \(-0.00356153\pi\)
\(420\) 0 0
\(421\) 10398.8 + 10398.8i 1.20382 + 1.20382i 0.972997 + 0.230818i \(0.0741403\pi\)
0.230818 + 0.972997i \(0.425860\pi\)
\(422\) 0 0
\(423\) 3215.68i 0.369625i
\(424\) 0 0
\(425\) −15593.7 −1.77978
\(426\) 0 0
\(427\) 8197.92 + 176.108i 0.929099 + 0.0199589i
\(428\) 0 0
\(429\) 2428.36 2428.36i 0.273293 0.273293i
\(430\) 0 0
\(431\) 12243.6i 1.36834i 0.729322 + 0.684170i \(0.239835\pi\)
−0.729322 + 0.684170i \(0.760165\pi\)
\(432\) 0 0
\(433\) 8787.77i 0.975320i −0.873034 0.487660i \(-0.837851\pi\)
0.873034 0.487660i \(-0.162149\pi\)
\(434\) 0 0
\(435\) −1684.22 1684.22i −0.185638 0.185638i
\(436\) 0 0
\(437\) −1774.44 + 1774.44i −0.194240 + 0.194240i
\(438\) 0 0
\(439\) 6163.76i 0.670115i 0.942198 + 0.335057i \(0.108756\pi\)
−0.942198 + 0.335057i \(0.891244\pi\)
\(440\) 0 0
\(441\) −6518.83 280.204i −0.703901 0.0302564i
\(442\) 0 0
\(443\) −705.371 + 705.371i −0.0756505 + 0.0756505i −0.743920 0.668269i \(-0.767035\pi\)
0.668269 + 0.743920i \(0.267035\pi\)
\(444\) 0 0
\(445\) −1295.74 + 1295.74i −0.138032 + 0.138032i
\(446\) 0 0
\(447\) −10419.1 −1.10247
\(448\) 0 0
\(449\) 1808.14 0.190048 0.0950240 0.995475i \(-0.469707\pi\)
0.0950240 + 0.995475i \(0.469707\pi\)
\(450\) 0 0
\(451\) −4086.62 + 4086.62i −0.426677 + 0.426677i
\(452\) 0 0
\(453\) −1236.51 + 1236.51i −0.128247 + 0.128247i
\(454\) 0 0
\(455\) 400.954 384.089i 0.0413121 0.0395745i
\(456\) 0 0
\(457\) 13173.0i 1.34838i −0.738560 0.674188i \(-0.764494\pi\)
0.738560 0.674188i \(-0.235506\pi\)
\(458\) 0 0
\(459\) −5116.51 + 5116.51i −0.520301 + 0.520301i
\(460\) 0 0
\(461\) −2780.05 2780.05i −0.280867 0.280867i 0.552588 0.833455i \(-0.313640\pi\)
−0.833455 + 0.552588i \(0.813640\pi\)
\(462\) 0 0
\(463\) 3630.01i 0.364365i 0.983265 + 0.182182i \(0.0583161\pi\)
−0.983265 + 0.182182i \(0.941684\pi\)
\(464\) 0 0
\(465\) 4693.41i 0.468068i
\(466\) 0 0
\(467\) 39.0209 39.0209i 0.00386654 0.00386654i −0.705171 0.709037i \(-0.749130\pi\)
0.709037 + 0.705171i \(0.249130\pi\)
\(468\) 0 0
\(469\) −1525.86 32.7786i −0.150230 0.00322723i
\(470\) 0 0
\(471\) −14703.4 −1.43842
\(472\) 0 0
\(473\) 5215.55i 0.507001i
\(474\) 0 0
\(475\) 1594.68 + 1594.68i 0.154040 + 0.154040i
\(476\) 0 0
\(477\) 9174.04 9174.04i 0.880609 0.880609i
\(478\) 0 0
\(479\) 1088.16 0.103798 0.0518990 0.998652i \(-0.483473\pi\)
0.0518990 + 0.998652i \(0.483473\pi\)
\(480\) 0 0
\(481\) 744.247i 0.0705504i
\(482\) 0 0
\(483\) 350.181 16301.1i 0.0329892 1.53567i
\(484\) 0 0
\(485\) 1936.03 + 1936.03i 0.181259 + 0.181259i
\(486\) 0 0
\(487\) 17740.1 1.65068 0.825339 0.564638i \(-0.190984\pi\)
0.825339 + 0.564638i \(0.190984\pi\)
\(488\) 0 0
\(489\) 1702.53 0.157446
\(490\) 0 0
\(491\) −5821.10 + 5821.10i −0.535036 + 0.535036i −0.922067 0.387031i \(-0.873501\pi\)
0.387031 + 0.922067i \(0.373501\pi\)
\(492\) 0 0
\(493\) 11470.9 + 11470.9i 1.04792 + 1.04792i
\(494\) 0 0
\(495\) 2689.86 0.244243
\(496\) 0 0
\(497\) −5003.34 + 4792.90i −0.451571 + 0.432577i
\(498\) 0 0
\(499\) −4283.85 4283.85i −0.384312 0.384312i 0.488341 0.872653i \(-0.337602\pi\)
−0.872653 + 0.488341i \(0.837602\pi\)
\(500\) 0 0
\(501\) −8261.88 8261.88i −0.736753 0.736753i
\(502\) 0 0
\(503\) 743.585i 0.0659142i 0.999457 + 0.0329571i \(0.0104925\pi\)
−0.999457 + 0.0329571i \(0.989508\pi\)
\(504\) 0 0
\(505\) 577.449i 0.0508834i
\(506\) 0 0
\(507\) −10024.2 10024.2i −0.878087 0.878087i
\(508\) 0 0
\(509\) 6189.71 + 6189.71i 0.539006 + 0.539006i 0.923237 0.384231i \(-0.125533\pi\)
−0.384231 + 0.923237i \(0.625533\pi\)
\(510\) 0 0
\(511\) −8158.20 + 7815.06i −0.706258 + 0.676552i
\(512\) 0 0
\(513\) 1046.47 0.0900638
\(514\) 0 0
\(515\) 1824.11 + 1824.11i 0.156078 + 0.156078i
\(516\) 0 0
\(517\) 5840.68 5840.68i 0.496852 0.496852i
\(518\) 0 0
\(519\) 17223.2 1.45668
\(520\) 0 0
\(521\) 11779.3 0.990521 0.495260 0.868745i \(-0.335073\pi\)
0.495260 + 0.868745i \(0.335073\pi\)
\(522\) 0 0
\(523\) 1261.69 + 1261.69i 0.105488 + 0.105488i 0.757881 0.652393i \(-0.226235\pi\)
−0.652393 + 0.757881i \(0.726235\pi\)
\(524\) 0 0
\(525\) −14649.7 314.705i −1.21784 0.0261616i
\(526\) 0 0
\(527\) 31965.8i 2.64222i
\(528\) 0 0
\(529\) 4673.97 0.384151
\(530\) 0 0
\(531\) −5425.92 + 5425.92i −0.443437 + 0.443437i
\(532\) 0 0
\(533\) −866.447 866.447i −0.0704127 0.0704127i
\(534\) 0 0
\(535\) 2977.53i 0.240616i
\(536\) 0 0
\(537\) 9151.86 0.735441
\(538\) 0 0
\(539\) 11331.3 + 12349.2i 0.905517 + 0.986858i
\(540\) 0 0
\(541\) 3180.80 3180.80i 0.252778 0.252778i −0.569330 0.822109i \(-0.692797\pi\)
0.822109 + 0.569330i \(0.192797\pi\)
\(542\) 0 0
\(543\) 17080.7i 1.34991i
\(544\) 0 0
\(545\) 4651.94i 0.365628i
\(546\) 0 0
\(547\) 2706.48 + 2706.48i 0.211555 + 0.211555i 0.804928 0.593373i \(-0.202204\pi\)
−0.593373 + 0.804928i \(0.702204\pi\)
\(548\) 0 0
\(549\) −5955.50 + 5955.50i −0.462977 + 0.462977i
\(550\) 0 0
\(551\) 2346.12i 0.181394i
\(552\) 0 0
\(553\) 5904.82 + 6164.09i 0.454066 + 0.474003i
\(554\) 0 0
\(555\) −997.242 + 997.242i −0.0762713 + 0.0762713i
\(556\) 0 0
\(557\) −1976.55 + 1976.55i −0.150358 + 0.150358i −0.778278 0.627920i \(-0.783906\pi\)
0.627920 + 0.778278i \(0.283906\pi\)
\(558\) 0 0
\(559\) −1105.80 −0.0836682
\(560\) 0 0
\(561\) −44322.5 −3.33565
\(562\) 0 0
\(563\) 1969.01 1969.01i 0.147396 0.147396i −0.629558 0.776954i \(-0.716764\pi\)
0.776954 + 0.629558i \(0.216764\pi\)
\(564\) 0 0
\(565\) −1138.95 + 1138.95i −0.0848071 + 0.0848071i
\(566\) 0 0
\(567\) −11779.2 + 11283.7i −0.872448 + 0.835752i
\(568\) 0 0
\(569\) 12025.5i 0.886004i 0.896521 + 0.443002i \(0.146087\pi\)
−0.896521 + 0.443002i \(0.853913\pi\)
\(570\) 0 0
\(571\) 3067.62 3067.62i 0.224826 0.224826i −0.585701 0.810527i \(-0.699181\pi\)
0.810527 + 0.585701i \(0.199181\pi\)
\(572\) 0 0
\(573\) −9901.06 9901.06i −0.721855 0.721855i
\(574\) 0 0
\(575\) 15134.8i 1.09768i
\(576\) 0 0
\(577\) 4574.91i 0.330080i −0.986287 0.165040i \(-0.947225\pi\)
0.986287 0.165040i \(-0.0527753\pi\)
\(578\) 0 0
\(579\) 5481.42 5481.42i 0.393437 0.393437i
\(580\) 0 0
\(581\) 492.431 22923.0i 0.0351626 1.63684i
\(582\) 0 0
\(583\) −33325.9 −2.36744
\(584\) 0 0
\(585\) 570.306i 0.0403064i
\(586\) 0 0
\(587\) −1826.09 1826.09i −0.128400 0.128400i 0.639986 0.768386i \(-0.278940\pi\)
−0.768386 + 0.639986i \(0.778940\pi\)
\(588\) 0 0
\(589\) −3268.95 + 3268.95i −0.228684 + 0.228684i
\(590\) 0 0
\(591\) 8035.12 0.559257
\(592\) 0 0
\(593\) 5705.55i 0.395107i −0.980292 0.197554i \(-0.936700\pi\)
0.980292 0.197554i \(-0.0632997\pi\)
\(594\) 0 0
\(595\) −7164.31 153.904i −0.493627 0.0106041i
\(596\) 0 0
\(597\) −10387.1 10387.1i −0.712090 0.712090i
\(598\) 0 0
\(599\) −10497.7 −0.716070 −0.358035 0.933708i \(-0.616553\pi\)
−0.358035 + 0.933708i \(0.616553\pi\)
\(600\) 0 0
\(601\) −9375.74 −0.636347 −0.318173 0.948033i \(-0.603069\pi\)
−0.318173 + 0.948033i \(0.603069\pi\)
\(602\) 0 0
\(603\) 1108.48 1108.48i 0.0748606 0.0748606i
\(604\) 0 0
\(605\) −2162.09 2162.09i −0.145291 0.145291i
\(606\) 0 0
\(607\) −5702.60 −0.381320 −0.190660 0.981656i \(-0.561063\pi\)
−0.190660 + 0.981656i \(0.561063\pi\)
\(608\) 0 0
\(609\) 10544.9 + 11007.9i 0.701646 + 0.732453i
\(610\) 0 0
\(611\) 1238.34 + 1238.34i 0.0819934 + 0.0819934i
\(612\) 0 0
\(613\) 7424.25 + 7424.25i 0.489172 + 0.489172i 0.908045 0.418873i \(-0.137575\pi\)
−0.418873 + 0.908045i \(0.637575\pi\)
\(614\) 0 0
\(615\) 2321.96i 0.152245i
\(616\) 0 0
\(617\) 22808.8i 1.48825i −0.668043 0.744123i \(-0.732868\pi\)
0.668043 0.744123i \(-0.267132\pi\)
\(618\) 0 0
\(619\) 15749.6 + 15749.6i 1.02267 + 1.02267i 0.999737 + 0.0229291i \(0.00729921\pi\)
0.0229291 + 0.999737i \(0.492701\pi\)
\(620\) 0 0
\(621\) −4965.94 4965.94i −0.320896 0.320896i
\(622\) 0 0
\(623\) 8468.86 8112.65i 0.544619 0.521712i
\(624\) 0 0
\(625\) −12554.8 −0.803507
\(626\) 0 0
\(627\) 4532.60 + 4532.60i 0.288699 + 0.288699i
\(628\) 0 0
\(629\) 6792.00 6792.00i 0.430548 0.430548i
\(630\) 0 0
\(631\) 7632.20 0.481510 0.240755 0.970586i \(-0.422605\pi\)
0.240755 + 0.970586i \(0.422605\pi\)
\(632\) 0 0
\(633\) −1251.29 −0.0785689
\(634\) 0 0
\(635\) 3250.83 + 3250.83i 0.203158 + 0.203158i
\(636\) 0 0
\(637\) −2618.28 + 2402.47i −0.162857 + 0.149434i
\(638\) 0 0
\(639\) 7116.62i 0.440578i
\(640\) 0 0
\(641\) 18811.7 1.15915 0.579576 0.814918i \(-0.303218\pi\)
0.579576 + 0.814918i \(0.303218\pi\)
\(642\) 0 0
\(643\) 14360.3 14360.3i 0.880740 0.880740i −0.112869 0.993610i \(-0.536004\pi\)
0.993610 + 0.112869i \(0.0360042\pi\)
\(644\) 0 0
\(645\) −1481.71 1481.71i −0.0904529 0.0904529i
\(646\) 0 0
\(647\) 13880.5i 0.843430i 0.906728 + 0.421715i \(0.138572\pi\)
−0.906728 + 0.421715i \(0.861428\pi\)
\(648\) 0 0
\(649\) 19710.4 1.19214
\(650\) 0 0
\(651\) 645.117 30030.6i 0.0388389 1.80797i
\(652\) 0 0
\(653\) 6926.86 6926.86i 0.415113 0.415113i −0.468402 0.883515i \(-0.655170\pi\)
0.883515 + 0.468402i \(0.155170\pi\)
\(654\) 0 0
\(655\) 6139.59i 0.366250i
\(656\) 0 0
\(657\) 11604.0i 0.689065i
\(658\) 0 0
\(659\) 21306.6 + 21306.6i 1.25947 + 1.25947i 0.951348 + 0.308118i \(0.0996992\pi\)
0.308118 + 0.951348i \(0.400301\pi\)
\(660\) 0 0
\(661\) 9192.89 9192.89i 0.540941 0.540941i −0.382864 0.923805i \(-0.625062\pi\)
0.923805 + 0.382864i \(0.125062\pi\)
\(662\) 0 0
\(663\) 9397.29i 0.550468i
\(664\) 0 0
\(665\) 716.912 + 748.389i 0.0418055 + 0.0436410i
\(666\) 0 0
\(667\) −11133.3 + 11133.3i −0.646303 + 0.646303i
\(668\) 0 0
\(669\) −5861.59 + 5861.59i −0.338748 + 0.338748i
\(670\) 0 0
\(671\) 21634.1 1.24467
\(672\) 0 0
\(673\) −24859.6 −1.42388 −0.711938 0.702242i \(-0.752182\pi\)
−0.711938 + 0.702242i \(0.752182\pi\)
\(674\) 0 0
\(675\) −4462.85 + 4462.85i −0.254482 + 0.254482i
\(676\) 0 0
\(677\) −11098.7 + 11098.7i −0.630070 + 0.630070i −0.948086 0.318016i \(-0.896984\pi\)
0.318016 + 0.948086i \(0.396984\pi\)
\(678\) 0 0
\(679\) −12121.5 12653.7i −0.685094 0.715175i
\(680\) 0 0
\(681\) 33724.7i 1.89770i
\(682\) 0 0
\(683\) 5129.88 5129.88i 0.287393 0.287393i −0.548656 0.836048i \(-0.684860\pi\)
0.836048 + 0.548656i \(0.184860\pi\)
\(684\) 0 0
\(685\) −4622.66 4622.66i −0.257844 0.257844i
\(686\) 0 0
\(687\) 32095.8i 1.78243i
\(688\) 0 0
\(689\) 7065.77i 0.390688i
\(690\) 0 0
\(691\) 1243.53 1243.53i 0.0684606 0.0684606i −0.672047 0.740508i \(-0.734585\pi\)
0.740508 + 0.672047i \(0.234585\pi\)
\(692\) 0 0
\(693\) −17211.0 369.726i −0.943420 0.0202666i
\(694\) 0 0
\(695\) 8781.73 0.479295
\(696\) 0 0
\(697\) 15814.4i 0.859416i
\(698\) 0 0
\(699\) −2580.07 2580.07i −0.139609 0.139609i
\(700\) 0 0
\(701\) 8513.11 8513.11i 0.458681 0.458681i −0.439541 0.898223i \(-0.644859\pi\)
0.898223 + 0.439541i \(0.144859\pi\)
\(702\) 0 0
\(703\) −1389.15 −0.0745276
\(704\) 0 0
\(705\) 3318.60i 0.177285i
\(706\) 0 0
\(707\) −79.3713 + 3694.78i −0.00422216 + 0.196544i
\(708\) 0 0
\(709\) 20499.4 + 20499.4i 1.08585 + 1.08585i 0.995950 + 0.0899043i \(0.0286561\pi\)
0.0899043 + 0.995950i \(0.471344\pi\)
\(710\) 0 0
\(711\) −8767.63 −0.462464
\(712\) 0 0
\(713\) 31025.1 1.62959
\(714\) 0 0
\(715\) 1035.85 1035.85i 0.0541801 0.0541801i
\(716\) 0 0
\(717\) −30716.8 30716.8i −1.59991 1.59991i
\(718\) 0 0
\(719\) −14074.7 −0.730037 −0.365018 0.931000i \(-0.618937\pi\)
−0.365018 + 0.931000i \(0.618937\pi\)
\(720\) 0 0
\(721\) −11420.8 11922.2i −0.589919 0.615821i
\(722\) 0 0
\(723\) −7908.69 7908.69i −0.406815 0.406815i
\(724\) 0 0
\(725\) 10005.4 + 10005.4i 0.512541 + 0.512541i
\(726\) 0 0
\(727\) 95.2264i 0.00485798i 0.999997 + 0.00242899i \(0.000773172\pi\)
−0.999997 + 0.00242899i \(0.999227\pi\)
\(728\) 0 0
\(729\) 6841.84i 0.347602i
\(730\) 0 0
\(731\) 10091.6 + 10091.6i 0.510602 + 0.510602i
\(732\) 0 0
\(733\) −13958.3 13958.3i −0.703357 0.703357i 0.261772 0.965130i \(-0.415693\pi\)
−0.965130 + 0.261772i \(0.915693\pi\)
\(734\) 0 0
\(735\) −6727.47 289.173i −0.337614 0.0145120i
\(736\) 0 0
\(737\) −4026.71 −0.201256
\(738\) 0 0
\(739\) −22132.3 22132.3i −1.10169 1.10169i −0.994207 0.107485i \(-0.965720\pi\)
−0.107485 0.994207i \(-0.534280\pi\)
\(740\) 0 0
\(741\) −961.004 + 961.004i −0.0476428 + 0.0476428i
\(742\) 0 0
\(743\) 5532.55 0.273176 0.136588 0.990628i \(-0.456386\pi\)
0.136588 + 0.990628i \(0.456386\pi\)
\(744\) 0 0
\(745\) −4444.40 −0.218564
\(746\) 0 0
\(747\) 16652.7 + 16652.7i 0.815651 + 0.815651i
\(748\) 0 0
\(749\) −409.266 + 19051.6i −0.0199656 + 0.929412i
\(750\) 0 0
\(751\) 36330.7i 1.76528i 0.470048 + 0.882641i \(0.344236\pi\)
−0.470048 + 0.882641i \(0.655764\pi\)
\(752\) 0 0
\(753\) 36226.2 1.75320
\(754\) 0 0
\(755\) −527.449 + 527.449i −0.0254250 + 0.0254250i
\(756\) 0 0
\(757\) 15674.3 + 15674.3i 0.752564 + 0.752564i 0.974957 0.222393i \(-0.0713869\pi\)
−0.222393 + 0.974957i \(0.571387\pi\)
\(758\) 0 0
\(759\) 43018.2i 2.05726i
\(760\) 0 0
\(761\) 16656.7 0.793437 0.396718 0.917940i \(-0.370149\pi\)
0.396718 + 0.917940i \(0.370149\pi\)
\(762\) 0 0
\(763\) 639.417 29765.2i 0.0303387 1.41229i
\(764\) 0 0
\(765\) 5204.62 5204.62i 0.245978 0.245978i
\(766\) 0 0
\(767\) 4179.00i 0.196734i
\(768\) 0 0
\(769\) 9190.37i 0.430966i 0.976508 + 0.215483i \(0.0691327\pi\)
−0.976508 + 0.215483i \(0.930867\pi\)
\(770\) 0 0
\(771\) 33386.6 + 33386.6i 1.55952 + 1.55952i
\(772\) 0 0
\(773\) −3285.14 + 3285.14i −0.152857 + 0.152857i −0.779393 0.626536i \(-0.784472\pi\)
0.626536 + 0.779393i \(0.284472\pi\)
\(774\) 0 0
\(775\) 27882.0i 1.29233i
\(776\) 0 0
\(777\) 6517.88 6243.74i 0.300937 0.288279i
\(778\) 0 0
\(779\) 1617.24 1617.24i 0.0743822 0.0743822i
\(780\) 0 0
\(781\) −12926.0 + 12926.0i −0.592227 + 0.592227i
\(782\) 0 0
\(783\) 6565.83 0.299672
\(784\) 0 0
\(785\) −6271.96 −0.285167
\(786\) 0 0
\(787\) 11875.1 11875.1i 0.537867 0.537867i −0.385035 0.922902i \(-0.625811\pi\)
0.922902 + 0.385035i \(0.125811\pi\)
\(788\) 0 0
\(789\) 21401.5 21401.5i 0.965668 0.965668i
\(790\) 0 0
\(791\) 7444.08 7130.98i 0.334616 0.320541i
\(792\) 0 0
\(793\) 4586.87i 0.205403i
\(794\) 0 0
\(795\) 9467.67 9467.67i 0.422369 0.422369i
\(796\) 0 0
\(797\) 27267.4 + 27267.4i 1.21187 + 1.21187i 0.970411 + 0.241460i \(0.0776263\pi\)
0.241460 + 0.970411i \(0.422374\pi\)
\(798\) 0 0
\(799\) 22602.3i 1.00076i
\(800\) 0 0
\(801\) 12045.9i 0.531361i
\(802\) 0 0
\(803\) −21076.5 + 21076.5i −0.926244 + 0.926244i
\(804\) 0 0
\(805\) 149.375 6953.48i 0.00654008 0.304445i
\(806\) 0 0
\(807\) −21607.3 −0.942518
\(808\) 0 0
\(809\) 37899.6i 1.64707i −0.567265 0.823535i \(-0.691999\pi\)
0.567265 0.823535i \(-0.308001\pi\)
\(810\) 0 0
\(811\) −2453.46 2453.46i −0.106230 0.106230i 0.651994 0.758224i \(-0.273933\pi\)
−0.758224 + 0.651994i \(0.773933\pi\)
\(812\) 0 0
\(813\) −31996.4 + 31996.4i −1.38027 + 1.38027i
\(814\) 0 0
\(815\) 726.238 0.0312135
\(816\) 0 0
\(817\) 2064.01i 0.0883850i
\(818\) 0 0
\(819\) 78.3895 3649.08i 0.00334451 0.155689i
\(820\) 0 0
\(821\) −16123.1 16123.1i −0.685385 0.685385i 0.275823 0.961208i \(-0.411050\pi\)
−0.961208 + 0.275823i \(0.911050\pi\)
\(822\) 0 0
\(823\) −24632.9 −1.04332 −0.521658 0.853155i \(-0.674686\pi\)
−0.521658 + 0.853155i \(0.674686\pi\)
\(824\) 0 0
\(825\) −38660.1 −1.63148
\(826\) 0 0
\(827\) −1089.80 + 1089.80i −0.0458236 + 0.0458236i −0.729647 0.683824i \(-0.760316\pi\)
0.683824 + 0.729647i \(0.260316\pi\)
\(828\) 0 0
\(829\) 4055.04 + 4055.04i 0.169888 + 0.169888i 0.786930 0.617042i \(-0.211669\pi\)
−0.617042 + 0.786930i \(0.711669\pi\)
\(830\) 0 0
\(831\) −14559.0 −0.607755
\(832\) 0 0
\(833\) 45819.4 + 1969.49i 1.90582 + 0.0819194i
\(834\) 0 0
\(835\) −3524.22 3524.22i −0.146061 0.146061i
\(836\) 0 0
\(837\) −9148.46 9148.46i −0.377798 0.377798i
\(838\) 0 0
\(839\) 35349.1i 1.45457i 0.686335 + 0.727285i \(0.259218\pi\)
−0.686335 + 0.727285i \(0.740782\pi\)
\(840\) 0 0
\(841\) 9668.83i 0.396442i
\(842\) 0 0
\(843\) −2682.87 2682.87i −0.109612 0.109612i
\(844\) 0 0
\(845\) −4275.97 4275.97i −0.174080 0.174080i
\(846\) 0 0
\(847\) 13536.8 + 14131.2i 0.549151 + 0.573263i
\(848\) 0 0
\(849\) −247.890 −0.0100207
\(850\) 0 0
\(851\) 6592.13 + 6592.13i 0.265541 + 0.265541i
\(852\) 0 0
\(853\) −28356.9 + 28356.9i −1.13824 + 1.13824i −0.149477 + 0.988765i \(0.547759\pi\)
−0.988765 + 0.149477i \(0.952241\pi\)
\(854\) 0 0
\(855\) −1064.49 −0.0425787
\(856\) 0 0
\(857\) 5617.28 0.223900 0.111950 0.993714i \(-0.464290\pi\)
0.111950 + 0.993714i \(0.464290\pi\)
\(858\) 0 0
\(859\) 26923.7 + 26923.7i 1.06941 + 1.06941i 0.997404 + 0.0720059i \(0.0229400\pi\)
0.0720059 + 0.997404i \(0.477060\pi\)
\(860\) 0 0
\(861\) −319.158 + 14857.0i −0.0126328 + 0.588066i
\(862\) 0 0
\(863\) 7764.09i 0.306249i −0.988207 0.153124i \(-0.951067\pi\)
0.988207 0.153124i \(-0.0489335\pi\)
\(864\) 0 0
\(865\) 7346.82 0.288785
\(866\) 0 0
\(867\) −62191.9 + 62191.9i −2.43616 + 2.43616i
\(868\) 0 0
\(869\) 15924.8 + 15924.8i 0.621646 + 0.621646i
\(870\) 0 0
\(871\) 853.745i 0.0332124i
\(872\) 0 0
\(873\) 17998.3 0.697765
\(874\) 0 0
\(875\) −12946.8 278.123i −0.500207 0.0107455i
\(876\) 0 0
\(877\) 15619.2 15619.2i 0.601396 0.601396i −0.339287 0.940683i \(-0.610186\pi\)
0.940683 + 0.339287i \(0.110186\pi\)
\(878\) 0 0
\(879\) 37057.3i 1.42197i
\(880\) 0 0
\(881\) 45320.9i 1.73314i 0.499053 + 0.866571i \(0.333681\pi\)
−0.499053 + 0.866571i \(0.666319\pi\)
\(882\) 0 0
\(883\) 5998.33 + 5998.33i 0.228607 + 0.228607i 0.812110 0.583504i \(-0.198319\pi\)
−0.583504 + 0.812110i \(0.698319\pi\)
\(884\) 0 0
\(885\) −5599.59 + 5599.59i −0.212687 + 0.212687i
\(886\) 0 0
\(887\) 25507.8i 0.965578i −0.875737 0.482789i \(-0.839624\pi\)
0.875737 0.482789i \(-0.160376\pi\)
\(888\) 0 0
\(889\) −20353.5 21247.1i −0.767866 0.801581i
\(890\) 0 0
\(891\) −30431.2 + 30431.2i −1.14420 + 1.14420i
\(892\) 0 0
\(893\) −2311.40 + 2311.40i −0.0866158 + 0.0866158i
\(894\) 0 0
\(895\) 3903.86 0.145801
\(896\) 0 0
\(897\) 9120.74 0.339501
\(898\) 0 0
\(899\) −20510.3 + 20510.3i −0.760907 + 0.760907i
\(900\) 0 0
\(901\) −64482.2 + 64482.2i −2.38426 + 2.38426i
\(902\) 0 0
\(903\) 9276.96 + 9684.29i 0.341880 + 0.356891i
\(904\) 0 0
\(905\) 7286.01i 0.267619i
\(906\) 0 0
\(907\) 26334.9 26334.9i 0.964096 0.964096i −0.0352818 0.999377i \(-0.511233\pi\)
0.999377 + 0.0352818i \(0.0112329\pi\)
\(908\) 0 0
\(909\) −2684.13 2684.13i −0.0979393 0.0979393i
\(910\) 0 0
\(911\) 16395.8i 0.596285i 0.954521 + 0.298142i \(0.0963671\pi\)
−0.954521 + 0.298142i \(0.903633\pi\)
\(912\) 0 0
\(913\) 60493.1i 2.19280i
\(914\) 0 0
\(915\) −6146.11 + 6146.11i −0.222059 + 0.222059i
\(916\) 0 0
\(917\) 843.896 39283.9i 0.0303903 1.41469i
\(918\) 0 0
\(919\) 26851.4 0.963815 0.481908 0.876222i \(-0.339944\pi\)
0.481908 + 0.876222i \(0.339944\pi\)
\(920\) 0 0
\(921\) 19614.3i 0.701750i
\(922\) 0 0
\(923\) −2740.58 2740.58i −0.0977327 0.0977327i
\(924\) 0 0
\(925\) 5924.29 5924.29i 0.210583 0.210583i
\(926\) 0 0
\(927\) 16957.9 0.600830
\(928\) 0 0
\(929\) 19627.5i 0.693171i 0.938018 + 0.346585i \(0.112659\pi\)
−0.938018 + 0.346585i \(0.887341\pi\)
\(930\) 0 0
\(931\) −4484.26 4887.08i −0.157858 0.172038i
\(932\) 0 0
\(933\) 44954.6 + 44954.6i 1.57744 + 1.57744i
\(934\) 0 0
\(935\) −18906.4 −0.661290
\(936\) 0 0
\(937\) −4230.42 −0.147494 −0.0737469 0.997277i \(-0.523496\pi\)
−0.0737469 + 0.997277i \(0.523496\pi\)
\(938\) 0 0
\(939\) −43072.2 + 43072.2i −1.49692 + 1.49692i
\(940\) 0 0
\(941\) 3133.94 + 3133.94i 0.108569 + 0.108569i 0.759305 0.650735i \(-0.225539\pi\)
−0.650735 + 0.759305i \(0.725539\pi\)
\(942\) 0 0
\(943\) −15349.0 −0.530045
\(944\) 0 0
\(945\) −2094.44 + 2006.35i −0.0720974 + 0.0690650i
\(946\) 0 0
\(947\) −273.354 273.354i −0.00937997 0.00937997i 0.702401 0.711781i \(-0.252111\pi\)
−0.711781 + 0.702401i \(0.752111\pi\)
\(948\) 0 0
\(949\) −4468.65 4468.65i −0.152854 0.152854i
\(950\) 0 0
\(951\) 16959.9i 0.578298i
\(952\) 0 0
\(953\) 20906.0i 0.710610i −0.934750 0.355305i \(-0.884377\pi\)
0.934750 0.355305i \(-0.115623\pi\)
\(954\) 0 0
\(955\) −4223.44 4223.44i −0.143107 0.143107i
\(956\) 0 0
\(957\) 28438.7 + 28438.7i 0.960599 + 0.960599i
\(958\) 0 0
\(959\) 28942.5 + 30213.3i 0.974559 + 1.01735i
\(960\) 0 0
\(961\) 27364.8 0.918558
\(962\) 0 0
\(963\) −13840.3 13840.3i −0.463133 0.463133i
\(964\) 0 0
\(965\) 2338.18 2338.18i 0.0779986 0.0779986i
\(966\) 0 0
\(967\) −9771.57 −0.324956 −0.162478 0.986712i \(-0.551949\pi\)
−0.162478 + 0.986712i \(0.551949\pi\)
\(968\) 0 0
\(969\) 17540.3 0.581501
\(970\) 0 0
\(971\) −9977.45 9977.45i −0.329754 0.329754i 0.522739 0.852493i \(-0.324910\pi\)
−0.852493 + 0.522739i \(0.824910\pi\)
\(972\) 0 0
\(973\) −56189.5 1207.06i −1.85134 0.0397705i
\(974\) 0 0
\(975\) 8196.74i 0.269237i
\(976\) 0 0
\(977\) 15291.4 0.500732 0.250366 0.968151i \(-0.419449\pi\)
0.250366 + 0.968151i \(0.419449\pi\)
\(978\) 0 0
\(979\) 21879.1 21879.1i 0.714258 0.714258i
\(980\) 0 0
\(981\) 21623.4 + 21623.4i 0.703753 + 0.703753i
\(982\) 0 0
\(983\) 14778.2i 0.479504i −0.970834 0.239752i \(-0.922934\pi\)
0.970834 0.239752i \(-0.0770661\pi\)
\(984\) 0 0
\(985\) 3427.50 0.110872
\(986\) 0 0
\(987\) 456.147 21233.9i 0.0147106 0.684785i
\(988\) 0 0
\(989\) −9794.60 + 9794.60i −0.314914 + 0.314914i
\(990\) 0 0
\(991\) 7672.15i 0.245927i −0.992411 0.122964i \(-0.960760\pi\)
0.992411 0.122964i \(-0.0392398\pi\)
\(992\) 0 0
\(993\) 45382.9i 1.45033i
\(994\) 0 0
\(995\) −4430.79 4430.79i −0.141171 0.141171i
\(996\) 0 0
\(997\) −28731.6 + 28731.6i −0.912677 + 0.912677i −0.996482 0.0838054i \(-0.973293\pi\)
0.0838054 + 0.996482i \(0.473293\pi\)
\(998\) 0 0
\(999\) 3887.68i 0.123124i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.4.j.b.335.37 88
4.3 odd 2 112.4.j.b.27.9 88
7.6 odd 2 inner 448.4.j.b.335.8 88
16.3 odd 4 inner 448.4.j.b.111.8 88
16.13 even 4 112.4.j.b.83.10 yes 88
28.27 even 2 112.4.j.b.27.10 yes 88
112.13 odd 4 112.4.j.b.83.9 yes 88
112.83 even 4 inner 448.4.j.b.111.37 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.4.j.b.27.9 88 4.3 odd 2
112.4.j.b.27.10 yes 88 28.27 even 2
112.4.j.b.83.9 yes 88 112.13 odd 4
112.4.j.b.83.10 yes 88 16.13 even 4
448.4.j.b.111.8 88 16.3 odd 4 inner
448.4.j.b.111.37 88 112.83 even 4 inner
448.4.j.b.335.8 88 7.6 odd 2 inner
448.4.j.b.335.37 88 1.1 even 1 trivial