L(s) = 1 | + (−6.75 + 6.75i)3-s + (−10.7 + 10.7i)5-s + (−7.90 + 16.7i)7-s − 64.1i·9-s + (−5.28 + 5.28i)11-s + (−50.4 − 50.4i)13-s − 145. i·15-s − 17.6i·17-s + (−63.5 + 63.5i)19-s + (−59.6 − 166. i)21-s − 7.51·23-s − 105. i·25-s + (250. + 250. i)27-s + (−153. + 153. i)29-s − 60.8·31-s + ⋯ |
L(s) = 1 | + (−1.29 + 1.29i)3-s + (−0.960 + 0.960i)5-s + (−0.427 + 0.904i)7-s − 2.37i·9-s + (−0.144 + 0.144i)11-s + (−1.07 − 1.07i)13-s − 2.49i·15-s − 0.252i·17-s + (−0.767 + 0.767i)19-s + (−0.619 − 1.72i)21-s − 0.0681·23-s − 0.846i·25-s + (1.78 + 1.78i)27-s + (−0.985 + 0.985i)29-s − 0.352·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0395i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0395i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.04137843485\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.04137843485\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (7.90 - 16.7i)T \) |
good | 3 | \( 1 + (6.75 - 6.75i)T - 27iT^{2} \) |
| 5 | \( 1 + (10.7 - 10.7i)T - 125iT^{2} \) |
| 11 | \( 1 + (5.28 - 5.28i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (50.4 + 50.4i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + 17.6iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (63.5 - 63.5i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + 7.51T + 1.21e4T^{2} \) |
| 29 | \( 1 + (153. - 153. i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 + 60.8T + 2.97e4T^{2} \) |
| 37 | \( 1 + (-129. - 129. i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 - 48.6T + 6.89e4T^{2} \) |
| 43 | \( 1 + (123. - 123. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + 254.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-498. - 498. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (-122. - 122. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (228. + 228. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (360. + 360. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 + 605.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 913.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 885. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (108. - 108. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + 269.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.45e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66694686704496074244642312148, −10.07235899869138423419461088412, −9.197864232170518225608309127616, −7.84595461721996450741293141735, −6.74174274762740360651901113830, −5.77785185973644303040770963721, −4.98562495244843630009036247703, −3.82465526925826568247347325467, −2.90250903419116486877727288460, −0.03051687873364960910609745936,
0.57103944575874449199509264025, 1.98492641401225766786043181846, 4.15061823331898492087020137123, 4.92062912731103606876707471231, 6.12877036603204872036762556210, 7.11265519225913386185398051432, 7.55389789446307264360801178847, 8.638881895160060332357096722386, 9.948973927322909245990885981097, 11.12816303560503375323555774005