L(s) = 1 | + (−6.75 + 6.75i)3-s + (−10.7 + 10.7i)5-s + (−7.90 + 16.7i)7-s − 64.1i·9-s + (−5.28 + 5.28i)11-s + (−50.4 − 50.4i)13-s − 145. i·15-s − 17.6i·17-s + (−63.5 + 63.5i)19-s + (−59.6 − 166. i)21-s − 7.51·23-s − 105. i·25-s + (250. + 250. i)27-s + (−153. + 153. i)29-s − 60.8·31-s + ⋯ |
L(s) = 1 | + (−1.29 + 1.29i)3-s + (−0.960 + 0.960i)5-s + (−0.427 + 0.904i)7-s − 2.37i·9-s + (−0.144 + 0.144i)11-s + (−1.07 − 1.07i)13-s − 2.49i·15-s − 0.252i·17-s + (−0.767 + 0.767i)19-s + (−0.619 − 1.72i)21-s − 0.0681·23-s − 0.846i·25-s + (1.78 + 1.78i)27-s + (−0.985 + 0.985i)29-s − 0.352·31-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)(0.999+0.0395i)Λ(4−s)
Λ(s)=(=(448s/2ΓC(s+3/2)L(s)(0.999+0.0395i)Λ(1−s)
Degree: |
2 |
Conductor: |
448
= 26⋅7
|
Sign: |
0.999+0.0395i
|
Analytic conductor: |
26.4328 |
Root analytic conductor: |
5.14128 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ448(335,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 448, ( :3/2), 0.999+0.0395i)
|
Particular Values
L(2) |
≈ |
0.04137843485 |
L(21) |
≈ |
0.04137843485 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(7.90−16.7i)T |
good | 3 | 1+(6.75−6.75i)T−27iT2 |
| 5 | 1+(10.7−10.7i)T−125iT2 |
| 11 | 1+(5.28−5.28i)T−1.33e3iT2 |
| 13 | 1+(50.4+50.4i)T+2.19e3iT2 |
| 17 | 1+17.6iT−4.91e3T2 |
| 19 | 1+(63.5−63.5i)T−6.85e3iT2 |
| 23 | 1+7.51T+1.21e4T2 |
| 29 | 1+(153.−153.i)T−2.43e4iT2 |
| 31 | 1+60.8T+2.97e4T2 |
| 37 | 1+(−129.−129.i)T+5.06e4iT2 |
| 41 | 1−48.6T+6.89e4T2 |
| 43 | 1+(123.−123.i)T−7.95e4iT2 |
| 47 | 1+254.T+1.03e5T2 |
| 53 | 1+(−498.−498.i)T+1.48e5iT2 |
| 59 | 1+(−122.−122.i)T+2.05e5iT2 |
| 61 | 1+(228.+228.i)T+2.26e5iT2 |
| 67 | 1+(360.+360.i)T+3.00e5iT2 |
| 71 | 1+605.T+3.57e5T2 |
| 73 | 1−913.T+3.89e5T2 |
| 79 | 1−885.iT−4.93e5T2 |
| 83 | 1+(108.−108.i)T−5.71e5iT2 |
| 89 | 1+269.T+7.04e5T2 |
| 97 | 1−1.45e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.66694686704496074244642312148, −10.07235899869138423419461088412, −9.197864232170518225608309127616, −7.84595461721996450741293141735, −6.74174274762740360651901113830, −5.77785185973644303040770963721, −4.98562495244843630009036247703, −3.82465526925826568247347325467, −2.90250903419116486877727288460, −0.03051687873364960910609745936,
0.57103944575874449199509264025, 1.98492641401225766786043181846, 4.15061823331898492087020137123, 4.92062912731103606876707471231, 6.12877036603204872036762556210, 7.11265519225913386185398051432, 7.55389789446307264360801178847, 8.638881895160060332357096722386, 9.948973927322909245990885981097, 11.12816303560503375323555774005