Properties

Label 448.4.j.b.335.2
Level $448$
Weight $4$
Character 448.335
Analytic conductor $26.433$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,4,Mod(111,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.111");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 448.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.4328556826\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(44\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 335.2
Character \(\chi\) \(=\) 448.335
Dual form 448.4.j.b.111.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-6.75145 + 6.75145i) q^{3} +(-10.7426 + 10.7426i) q^{5} +(-7.90955 + 16.7463i) q^{7} -64.1641i q^{9} +(-5.28964 + 5.28964i) q^{11} +(-50.4866 - 50.4866i) q^{13} -145.056i q^{15} -17.6955i q^{17} +(-63.5461 + 63.5461i) q^{19} +(-59.6609 - 166.463i) q^{21} -7.51181 q^{23} -105.807i q^{25} +(250.911 + 250.911i) q^{27} +(-153.894 + 153.894i) q^{29} -60.8015 q^{31} -71.4254i q^{33} +(-94.9298 - 264.868i) q^{35} +(129.137 + 129.137i) q^{37} +681.716 q^{39} +48.6217 q^{41} +(-123.020 + 123.020i) q^{43} +(689.289 + 689.289i) q^{45} -254.748 q^{47} +(-217.878 - 264.912i) q^{49} +(119.470 + 119.470i) q^{51} +(498.959 + 498.959i) q^{53} -113.649i q^{55} -858.056i q^{57} +(122.203 + 122.203i) q^{59} +(-228.300 - 228.300i) q^{61} +(1074.51 + 507.509i) q^{63} +1084.72 q^{65} +(-360.174 - 360.174i) q^{67} +(50.7156 - 50.7156i) q^{69} -605.544 q^{71} +913.990 q^{73} +(714.350 + 714.350i) q^{75} +(-46.7433 - 130.421i) q^{77} +885.306i q^{79} -1655.60 q^{81} +(-108.532 + 108.532i) q^{83} +(190.095 + 190.095i) q^{85} -2078.01i q^{87} -269.774 q^{89} +(1244.79 - 446.138i) q^{91} +(410.498 - 410.498i) q^{93} -1365.30i q^{95} +1452.58i q^{97} +(339.405 + 339.405i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{7} - 112 q^{11} + 52 q^{21} - 160 q^{23} + 528 q^{29} - 476 q^{35} - 896 q^{37} + 8 q^{39} - 40 q^{43} - 1376 q^{49} - 1504 q^{51} - 1560 q^{53} - 8 q^{65} - 648 q^{67} + 456 q^{71} + 292 q^{77}+ \cdots - 7592 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −6.75145 + 6.75145i −1.29932 + 1.29932i −0.370474 + 0.928843i \(0.620805\pi\)
−0.928843 + 0.370474i \(0.879195\pi\)
\(4\) 0 0
\(5\) −10.7426 + 10.7426i −0.960848 + 0.960848i −0.999262 0.0384144i \(-0.987769\pi\)
0.0384144 + 0.999262i \(0.487769\pi\)
\(6\) 0 0
\(7\) −7.90955 + 16.7463i −0.427076 + 0.904216i
\(8\) 0 0
\(9\) 64.1641i 2.37645i
\(10\) 0 0
\(11\) −5.28964 + 5.28964i −0.144990 + 0.144990i −0.775876 0.630886i \(-0.782692\pi\)
0.630886 + 0.775876i \(0.282692\pi\)
\(12\) 0 0
\(13\) −50.4866 50.4866i −1.07711 1.07711i −0.996767 0.0803460i \(-0.974397\pi\)
−0.0803460 0.996767i \(-0.525603\pi\)
\(14\) 0 0
\(15\) 145.056i 2.49689i
\(16\) 0 0
\(17\) 17.6955i 0.252458i −0.992001 0.126229i \(-0.959713\pi\)
0.992001 0.126229i \(-0.0402874\pi\)
\(18\) 0 0
\(19\) −63.5461 + 63.5461i −0.767288 + 0.767288i −0.977628 0.210340i \(-0.932543\pi\)
0.210340 + 0.977628i \(0.432543\pi\)
\(20\) 0 0
\(21\) −59.6609 166.463i −0.619956 1.72977i
\(22\) 0 0
\(23\) −7.51181 −0.0681009 −0.0340504 0.999420i \(-0.510841\pi\)
−0.0340504 + 0.999420i \(0.510841\pi\)
\(24\) 0 0
\(25\) 105.807i 0.846456i
\(26\) 0 0
\(27\) 250.911 + 250.911i 1.78844 + 1.78844i
\(28\) 0 0
\(29\) −153.894 + 153.894i −0.985425 + 0.985425i −0.999895 0.0144699i \(-0.995394\pi\)
0.0144699 + 0.999895i \(0.495394\pi\)
\(30\) 0 0
\(31\) −60.8015 −0.352267 −0.176133 0.984366i \(-0.556359\pi\)
−0.176133 + 0.984366i \(0.556359\pi\)
\(32\) 0 0
\(33\) 71.4254i 0.376775i
\(34\) 0 0
\(35\) −94.9298 264.868i −0.458459 1.27917i
\(36\) 0 0
\(37\) 129.137 + 129.137i 0.573784 + 0.573784i 0.933184 0.359399i \(-0.117018\pi\)
−0.359399 + 0.933184i \(0.617018\pi\)
\(38\) 0 0
\(39\) 681.716 2.79902
\(40\) 0 0
\(41\) 48.6217 0.185206 0.0926029 0.995703i \(-0.470481\pi\)
0.0926029 + 0.995703i \(0.470481\pi\)
\(42\) 0 0
\(43\) −123.020 + 123.020i −0.436289 + 0.436289i −0.890761 0.454472i \(-0.849828\pi\)
0.454472 + 0.890761i \(0.349828\pi\)
\(44\) 0 0
\(45\) 689.289 + 689.289i 2.28340 + 2.28340i
\(46\) 0 0
\(47\) −254.748 −0.790612 −0.395306 0.918550i \(-0.629361\pi\)
−0.395306 + 0.918550i \(0.629361\pi\)
\(48\) 0 0
\(49\) −217.878 264.912i −0.635213 0.772337i
\(50\) 0 0
\(51\) 119.470 + 119.470i 0.328023 + 0.328023i
\(52\) 0 0
\(53\) 498.959 + 498.959i 1.29316 + 1.29316i 0.932823 + 0.360334i \(0.117337\pi\)
0.360334 + 0.932823i \(0.382663\pi\)
\(54\) 0 0
\(55\) 113.649i 0.278626i
\(56\) 0 0
\(57\) 858.056i 1.99390i
\(58\) 0 0
\(59\) 122.203 + 122.203i 0.269652 + 0.269652i 0.828960 0.559308i \(-0.188933\pi\)
−0.559308 + 0.828960i \(0.688933\pi\)
\(60\) 0 0
\(61\) −228.300 228.300i −0.479194 0.479194i 0.425680 0.904874i \(-0.360035\pi\)
−0.904874 + 0.425680i \(0.860035\pi\)
\(62\) 0 0
\(63\) 1074.51 + 507.509i 2.14882 + 1.01492i
\(64\) 0 0
\(65\) 1084.72 2.06988
\(66\) 0 0
\(67\) −360.174 360.174i −0.656750 0.656750i 0.297860 0.954610i \(-0.403727\pi\)
−0.954610 + 0.297860i \(0.903727\pi\)
\(68\) 0 0
\(69\) 50.7156 50.7156i 0.0884846 0.0884846i
\(70\) 0 0
\(71\) −605.544 −1.01218 −0.506091 0.862480i \(-0.668910\pi\)
−0.506091 + 0.862480i \(0.668910\pi\)
\(72\) 0 0
\(73\) 913.990 1.46540 0.732702 0.680550i \(-0.238259\pi\)
0.732702 + 0.680550i \(0.238259\pi\)
\(74\) 0 0
\(75\) 714.350 + 714.350i 1.09981 + 1.09981i
\(76\) 0 0
\(77\) −46.7433 130.421i −0.0691804 0.193024i
\(78\) 0 0
\(79\) 885.306i 1.26082i 0.776263 + 0.630410i \(0.217113\pi\)
−0.776263 + 0.630410i \(0.782887\pi\)
\(80\) 0 0
\(81\) −1655.60 −2.27105
\(82\) 0 0
\(83\) −108.532 + 108.532i −0.143530 + 0.143530i −0.775221 0.631691i \(-0.782361\pi\)
0.631691 + 0.775221i \(0.282361\pi\)
\(84\) 0 0
\(85\) 190.095 + 190.095i 0.242573 + 0.242573i
\(86\) 0 0
\(87\) 2078.01i 2.56076i
\(88\) 0 0
\(89\) −269.774 −0.321304 −0.160652 0.987011i \(-0.551360\pi\)
−0.160652 + 0.987011i \(0.551360\pi\)
\(90\) 0 0
\(91\) 1244.79 446.138i 1.43395 0.513934i
\(92\) 0 0
\(93\) 410.498 410.498i 0.457706 0.457706i
\(94\) 0 0
\(95\) 1365.30i 1.47449i
\(96\) 0 0
\(97\) 1452.58i 1.52049i 0.649639 + 0.760243i \(0.274920\pi\)
−0.649639 + 0.760243i \(0.725080\pi\)
\(98\) 0 0
\(99\) 339.405 + 339.405i 0.344560 + 0.344560i
\(100\) 0 0
\(101\) 32.6448 32.6448i 0.0321612 0.0321612i −0.690843 0.723004i \(-0.742761\pi\)
0.723004 + 0.690843i \(0.242761\pi\)
\(102\) 0 0
\(103\) 1486.69i 1.42221i 0.703086 + 0.711105i \(0.251805\pi\)
−0.703086 + 0.711105i \(0.748195\pi\)
\(104\) 0 0
\(105\) 2429.16 + 1147.33i 2.25773 + 1.06636i
\(106\) 0 0
\(107\) 973.114 973.114i 0.879201 0.879201i −0.114251 0.993452i \(-0.536447\pi\)
0.993452 + 0.114251i \(0.0364468\pi\)
\(108\) 0 0
\(109\) 266.730 266.730i 0.234386 0.234386i −0.580134 0.814521i \(-0.697000\pi\)
0.814521 + 0.580134i \(0.197000\pi\)
\(110\) 0 0
\(111\) −1743.73 −1.49106
\(112\) 0 0
\(113\) 93.8639 0.0781414 0.0390707 0.999236i \(-0.487560\pi\)
0.0390707 + 0.999236i \(0.487560\pi\)
\(114\) 0 0
\(115\) 80.6964 80.6964i 0.0654346 0.0654346i
\(116\) 0 0
\(117\) −3239.43 + 3239.43i −2.55970 + 2.55970i
\(118\) 0 0
\(119\) 296.334 + 139.963i 0.228276 + 0.107819i
\(120\) 0 0
\(121\) 1275.04i 0.957956i
\(122\) 0 0
\(123\) −328.267 + 328.267i −0.240641 + 0.240641i
\(124\) 0 0
\(125\) −206.183 206.183i −0.147532 0.147532i
\(126\) 0 0
\(127\) 18.1807i 0.0127030i −0.999980 0.00635148i \(-0.997978\pi\)
0.999980 0.00635148i \(-0.00202175\pi\)
\(128\) 0 0
\(129\) 1661.13i 1.13376i
\(130\) 0 0
\(131\) 989.922 989.922i 0.660228 0.660228i −0.295206 0.955434i \(-0.595388\pi\)
0.955434 + 0.295206i \(0.0953881\pi\)
\(132\) 0 0
\(133\) −561.541 1566.78i −0.366104 1.02148i
\(134\) 0 0
\(135\) −5390.88 −3.43684
\(136\) 0 0
\(137\) 2748.38i 1.71394i −0.515363 0.856972i \(-0.672343\pi\)
0.515363 0.856972i \(-0.327657\pi\)
\(138\) 0 0
\(139\) −1356.64 1356.64i −0.827830 0.827830i 0.159387 0.987216i \(-0.449048\pi\)
−0.987216 + 0.159387i \(0.949048\pi\)
\(140\) 0 0
\(141\) 1719.91 1719.91i 1.02726 1.02726i
\(142\) 0 0
\(143\) 534.112 0.312341
\(144\) 0 0
\(145\) 3306.44i 1.89369i
\(146\) 0 0
\(147\) 3259.53 + 317.546i 1.82885 + 0.178169i
\(148\) 0 0
\(149\) −1086.44 1086.44i −0.597345 0.597345i 0.342260 0.939605i \(-0.388808\pi\)
−0.939605 + 0.342260i \(0.888808\pi\)
\(150\) 0 0
\(151\) −270.825 −0.145957 −0.0729784 0.997334i \(-0.523250\pi\)
−0.0729784 + 0.997334i \(0.523250\pi\)
\(152\) 0 0
\(153\) −1135.41 −0.599953
\(154\) 0 0
\(155\) 653.166 653.166i 0.338475 0.338475i
\(156\) 0 0
\(157\) 360.348 + 360.348i 0.183178 + 0.183178i 0.792739 0.609561i \(-0.208654\pi\)
−0.609561 + 0.792739i \(0.708654\pi\)
\(158\) 0 0
\(159\) −6737.39 −3.36044
\(160\) 0 0
\(161\) 59.4151 125.795i 0.0290842 0.0615779i
\(162\) 0 0
\(163\) −1755.20 1755.20i −0.843422 0.843422i 0.145880 0.989302i \(-0.453399\pi\)
−0.989302 + 0.145880i \(0.953399\pi\)
\(164\) 0 0
\(165\) 767.295 + 767.295i 0.362023 + 0.362023i
\(166\) 0 0
\(167\) 1281.85i 0.593968i −0.954882 0.296984i \(-0.904019\pi\)
0.954882 0.296984i \(-0.0959808\pi\)
\(168\) 0 0
\(169\) 2900.80i 1.32035i
\(170\) 0 0
\(171\) 4077.37 + 4077.37i 1.82342 + 1.82342i
\(172\) 0 0
\(173\) 54.8132 + 54.8132i 0.0240888 + 0.0240888i 0.719049 0.694960i \(-0.244578\pi\)
−0.694960 + 0.719049i \(0.744578\pi\)
\(174\) 0 0
\(175\) 1771.88 + 836.886i 0.765379 + 0.361501i
\(176\) 0 0
\(177\) −1650.10 −0.700727
\(178\) 0 0
\(179\) 1497.55 + 1497.55i 0.625320 + 0.625320i 0.946887 0.321567i \(-0.104210\pi\)
−0.321567 + 0.946887i \(0.604210\pi\)
\(180\) 0 0
\(181\) −3092.20 + 3092.20i −1.26984 + 1.26984i −0.323675 + 0.946168i \(0.604918\pi\)
−0.946168 + 0.323675i \(0.895082\pi\)
\(182\) 0 0
\(183\) 3082.72 1.24525
\(184\) 0 0
\(185\) −2774.54 −1.10264
\(186\) 0 0
\(187\) 93.6027 + 93.6027i 0.0366038 + 0.0366038i
\(188\) 0 0
\(189\) −6186.44 + 2217.24i −2.38094 + 0.853337i
\(190\) 0 0
\(191\) 880.871i 0.333705i 0.985982 + 0.166852i \(0.0533603\pi\)
−0.985982 + 0.166852i \(0.946640\pi\)
\(192\) 0 0
\(193\) 4562.97 1.70181 0.850905 0.525319i \(-0.176054\pi\)
0.850905 + 0.525319i \(0.176054\pi\)
\(194\) 0 0
\(195\) −7323.40 + 7323.40i −2.68943 + 2.68943i
\(196\) 0 0
\(197\) 1121.88 + 1121.88i 0.405738 + 0.405738i 0.880249 0.474512i \(-0.157375\pi\)
−0.474512 + 0.880249i \(0.657375\pi\)
\(198\) 0 0
\(199\) 1396.02i 0.497293i −0.968594 0.248646i \(-0.920014\pi\)
0.968594 0.248646i \(-0.0799857\pi\)
\(200\) 0 0
\(201\) 4863.39 1.70665
\(202\) 0 0
\(203\) −1359.92 3794.38i −0.470186 1.31189i
\(204\) 0 0
\(205\) −522.324 + 522.324i −0.177955 + 0.177955i
\(206\) 0 0
\(207\) 481.988i 0.161838i
\(208\) 0 0
\(209\) 672.272i 0.222498i
\(210\) 0 0
\(211\) 763.850 + 763.850i 0.249221 + 0.249221i 0.820651 0.571430i \(-0.193611\pi\)
−0.571430 + 0.820651i \(0.693611\pi\)
\(212\) 0 0
\(213\) 4088.30 4088.30i 1.31514 1.31514i
\(214\) 0 0
\(215\) 2643.12i 0.838415i
\(216\) 0 0
\(217\) 480.913 1018.20i 0.150445 0.318525i
\(218\) 0 0
\(219\) −6170.76 + 6170.76i −1.90402 + 1.90402i
\(220\) 0 0
\(221\) −893.385 + 893.385i −0.271926 + 0.271926i
\(222\) 0 0
\(223\) 3793.85 1.13926 0.569631 0.821901i \(-0.307086\pi\)
0.569631 + 0.821901i \(0.307086\pi\)
\(224\) 0 0
\(225\) −6789.01 −2.01156
\(226\) 0 0
\(227\) 1146.33 1146.33i 0.335173 0.335173i −0.519374 0.854547i \(-0.673835\pi\)
0.854547 + 0.519374i \(0.173835\pi\)
\(228\) 0 0
\(229\) −2144.18 + 2144.18i −0.618740 + 0.618740i −0.945208 0.326468i \(-0.894141\pi\)
0.326468 + 0.945208i \(0.394141\pi\)
\(230\) 0 0
\(231\) 1196.11 + 564.943i 0.340686 + 0.160911i
\(232\) 0 0
\(233\) 614.860i 0.172879i 0.996257 + 0.0864395i \(0.0275489\pi\)
−0.996257 + 0.0864395i \(0.972451\pi\)
\(234\) 0 0
\(235\) 2736.65 2736.65i 0.759657 0.759657i
\(236\) 0 0
\(237\) −5977.10 5977.10i −1.63820 1.63820i
\(238\) 0 0
\(239\) 4263.99i 1.15404i 0.816731 + 0.577018i \(0.195784\pi\)
−0.816731 + 0.577018i \(0.804216\pi\)
\(240\) 0 0
\(241\) 2731.19i 0.730006i −0.931006 0.365003i \(-0.881068\pi\)
0.931006 0.365003i \(-0.118932\pi\)
\(242\) 0 0
\(243\) 4403.08 4403.08i 1.16238 1.16238i
\(244\) 0 0
\(245\) 5186.42 + 505.266i 1.35244 + 0.131756i
\(246\) 0 0
\(247\) 6416.45 1.65291
\(248\) 0 0
\(249\) 1465.50i 0.372981i
\(250\) 0 0
\(251\) −975.121 975.121i −0.245216 0.245216i 0.573788 0.819004i \(-0.305473\pi\)
−0.819004 + 0.573788i \(0.805473\pi\)
\(252\) 0 0
\(253\) 39.7348 39.7348i 0.00987393 0.00987393i
\(254\) 0 0
\(255\) −2566.84 −0.630359
\(256\) 0 0
\(257\) 6513.55i 1.58095i −0.612495 0.790475i \(-0.709834\pi\)
0.612495 0.790475i \(-0.290166\pi\)
\(258\) 0 0
\(259\) −3183.99 + 1141.15i −0.763874 + 0.273776i
\(260\) 0 0
\(261\) 9874.45 + 9874.45i 2.34181 + 2.34181i
\(262\) 0 0
\(263\) −802.056 −0.188049 −0.0940245 0.995570i \(-0.529973\pi\)
−0.0940245 + 0.995570i \(0.529973\pi\)
\(264\) 0 0
\(265\) −10720.2 −2.48505
\(266\) 0 0
\(267\) 1821.37 1821.37i 0.417475 0.417475i
\(268\) 0 0
\(269\) 2029.90 + 2029.90i 0.460094 + 0.460094i 0.898686 0.438592i \(-0.144523\pi\)
−0.438592 + 0.898686i \(0.644523\pi\)
\(270\) 0 0
\(271\) −2449.85 −0.549143 −0.274572 0.961567i \(-0.588536\pi\)
−0.274572 + 0.961567i \(0.588536\pi\)
\(272\) 0 0
\(273\) −5392.07 + 11416.2i −1.19539 + 2.53092i
\(274\) 0 0
\(275\) 559.681 + 559.681i 0.122727 + 0.122727i
\(276\) 0 0
\(277\) −3804.74 3804.74i −0.825288 0.825288i 0.161573 0.986861i \(-0.448343\pi\)
−0.986861 + 0.161573i \(0.948343\pi\)
\(278\) 0 0
\(279\) 3901.27i 0.837144i
\(280\) 0 0
\(281\) 5469.38i 1.16112i −0.814216 0.580562i \(-0.802833\pi\)
0.814216 0.580562i \(-0.197167\pi\)
\(282\) 0 0
\(283\) 2997.42 + 2997.42i 0.629606 + 0.629606i 0.947969 0.318363i \(-0.103133\pi\)
−0.318363 + 0.947969i \(0.603133\pi\)
\(284\) 0 0
\(285\) 9217.75 + 9217.75i 1.91583 + 1.91583i
\(286\) 0 0
\(287\) −384.576 + 814.235i −0.0790970 + 0.167466i
\(288\) 0 0
\(289\) 4599.87 0.936265
\(290\) 0 0
\(291\) −9807.02 9807.02i −1.97559 1.97559i
\(292\) 0 0
\(293\) 4777.03 4777.03i 0.952482 0.952482i −0.0464390 0.998921i \(-0.514787\pi\)
0.998921 + 0.0464390i \(0.0147873\pi\)
\(294\) 0 0
\(295\) −2625.56 −0.518190
\(296\) 0 0
\(297\) −2654.46 −0.518611
\(298\) 0 0
\(299\) 379.246 + 379.246i 0.0733524 + 0.0733524i
\(300\) 0 0
\(301\) −1087.10 3033.18i −0.208171 0.580828i
\(302\) 0 0
\(303\) 440.799i 0.0835751i
\(304\) 0 0
\(305\) 4905.08 0.920866
\(306\) 0 0
\(307\) 1382.11 1382.11i 0.256941 0.256941i −0.566868 0.823809i \(-0.691845\pi\)
0.823809 + 0.566868i \(0.191845\pi\)
\(308\) 0 0
\(309\) −10037.3 10037.3i −1.84790 1.84790i
\(310\) 0 0
\(311\) 4113.03i 0.749931i −0.927039 0.374966i \(-0.877654\pi\)
0.927039 0.374966i \(-0.122346\pi\)
\(312\) 0 0
\(313\) −1183.14 −0.213659 −0.106829 0.994277i \(-0.534070\pi\)
−0.106829 + 0.994277i \(0.534070\pi\)
\(314\) 0 0
\(315\) −16995.0 + 6091.08i −3.03988 + 1.08950i
\(316\) 0 0
\(317\) 1538.47 1538.47i 0.272584 0.272584i −0.557556 0.830140i \(-0.688261\pi\)
0.830140 + 0.557556i \(0.188261\pi\)
\(318\) 0 0
\(319\) 1628.08i 0.285753i
\(320\) 0 0
\(321\) 13139.9i 2.28472i
\(322\) 0 0
\(323\) 1124.48 + 1124.48i 0.193708 + 0.193708i
\(324\) 0 0
\(325\) −5341.84 + 5341.84i −0.911729 + 0.911729i
\(326\) 0 0
\(327\) 3601.63i 0.609084i
\(328\) 0 0
\(329\) 2014.94 4266.08i 0.337651 0.714884i
\(330\) 0 0
\(331\) −1870.74 + 1870.74i −0.310651 + 0.310651i −0.845162 0.534511i \(-0.820496\pi\)
0.534511 + 0.845162i \(0.320496\pi\)
\(332\) 0 0
\(333\) 8285.97 8285.97i 1.36357 1.36357i
\(334\) 0 0
\(335\) 7738.41 1.26207
\(336\) 0 0
\(337\) 2561.19 0.413997 0.206999 0.978341i \(-0.433630\pi\)
0.206999 + 0.978341i \(0.433630\pi\)
\(338\) 0 0
\(339\) −633.717 + 633.717i −0.101530 + 0.101530i
\(340\) 0 0
\(341\) 321.618 321.618i 0.0510751 0.0510751i
\(342\) 0 0
\(343\) 6159.61 1553.32i 0.969644 0.244523i
\(344\) 0 0
\(345\) 1089.63i 0.170040i
\(346\) 0 0
\(347\) 7775.33 7775.33i 1.20289 1.20289i 0.229601 0.973285i \(-0.426258\pi\)
0.973285 0.229601i \(-0.0737421\pi\)
\(348\) 0 0
\(349\) 5078.97 + 5078.97i 0.778999 + 0.778999i 0.979661 0.200661i \(-0.0643090\pi\)
−0.200661 + 0.979661i \(0.564309\pi\)
\(350\) 0 0
\(351\) 25335.3i 3.85271i
\(352\) 0 0
\(353\) 321.509i 0.0484764i −0.999706 0.0242382i \(-0.992284\pi\)
0.999706 0.0242382i \(-0.00771602\pi\)
\(354\) 0 0
\(355\) 6505.12 6505.12i 0.972552 0.972552i
\(356\) 0 0
\(357\) −2945.64 + 1055.73i −0.436694 + 0.156513i
\(358\) 0 0
\(359\) −8216.04 −1.20787 −0.603936 0.797033i \(-0.706402\pi\)
−0.603936 + 0.797033i \(0.706402\pi\)
\(360\) 0 0
\(361\) 1217.21i 0.177461i
\(362\) 0 0
\(363\) −8608.36 8608.36i −1.24469 1.24469i
\(364\) 0 0
\(365\) −9818.64 + 9818.64i −1.40803 + 1.40803i
\(366\) 0 0
\(367\) 2600.73 0.369910 0.184955 0.982747i \(-0.440786\pi\)
0.184955 + 0.982747i \(0.440786\pi\)
\(368\) 0 0
\(369\) 3119.77i 0.440132i
\(370\) 0 0
\(371\) −12302.3 + 4409.18i −1.72157 + 0.617017i
\(372\) 0 0
\(373\) −1438.00 1438.00i −0.199616 0.199616i 0.600219 0.799835i \(-0.295080\pi\)
−0.799835 + 0.600219i \(0.795080\pi\)
\(374\) 0 0
\(375\) 2784.07 0.383383
\(376\) 0 0
\(377\) 15539.1 2.12283
\(378\) 0 0
\(379\) 5788.76 5788.76i 0.784561 0.784561i −0.196036 0.980597i \(-0.562807\pi\)
0.980597 + 0.196036i \(0.0628069\pi\)
\(380\) 0 0
\(381\) 122.746 + 122.746i 0.0165052 + 0.0165052i
\(382\) 0 0
\(383\) 1861.45 0.248344 0.124172 0.992261i \(-0.460373\pi\)
0.124172 + 0.992261i \(0.460373\pi\)
\(384\) 0 0
\(385\) 1903.20 + 898.913i 0.251938 + 0.118994i
\(386\) 0 0
\(387\) 7893.49 + 7893.49i 1.03682 + 1.03682i
\(388\) 0 0
\(389\) −9938.04 9938.04i −1.29532 1.29532i −0.931451 0.363866i \(-0.881457\pi\)
−0.363866 0.931451i \(-0.618543\pi\)
\(390\) 0 0
\(391\) 132.925i 0.0171926i
\(392\) 0 0
\(393\) 13366.8i 1.71569i
\(394\) 0 0
\(395\) −9510.49 9510.49i −1.21146 1.21146i
\(396\) 0 0
\(397\) −2937.95 2937.95i −0.371414 0.371414i 0.496578 0.867992i \(-0.334590\pi\)
−0.867992 + 0.496578i \(0.834590\pi\)
\(398\) 0 0
\(399\) 14369.3 + 6786.84i 1.80292 + 0.851546i
\(400\) 0 0
\(401\) 575.655 0.0716879 0.0358440 0.999357i \(-0.488588\pi\)
0.0358440 + 0.999357i \(0.488588\pi\)
\(402\) 0 0
\(403\) 3069.66 + 3069.66i 0.379431 + 0.379431i
\(404\) 0 0
\(405\) 17785.4 17785.4i 2.18214 2.18214i
\(406\) 0 0
\(407\) −1366.18 −0.166386
\(408\) 0 0
\(409\) 1575.07 0.190421 0.0952105 0.995457i \(-0.469648\pi\)
0.0952105 + 0.995457i \(0.469648\pi\)
\(410\) 0 0
\(411\) 18555.6 + 18555.6i 2.22696 + 2.22696i
\(412\) 0 0
\(413\) −3013.02 + 1079.88i −0.358986 + 0.128662i
\(414\) 0 0
\(415\) 2331.84i 0.275821i
\(416\) 0 0
\(417\) 18318.5 2.15123
\(418\) 0 0
\(419\) 6534.27 6534.27i 0.761862 0.761862i −0.214797 0.976659i \(-0.568909\pi\)
0.976659 + 0.214797i \(0.0689089\pi\)
\(420\) 0 0
\(421\) 5564.69 + 5564.69i 0.644196 + 0.644196i 0.951584 0.307388i \(-0.0994550\pi\)
−0.307388 + 0.951584i \(0.599455\pi\)
\(422\) 0 0
\(423\) 16345.6i 1.87885i
\(424\) 0 0
\(425\) −1872.30 −0.213694
\(426\) 0 0
\(427\) 5628.94 2017.43i 0.637948 0.228643i
\(428\) 0 0
\(429\) −3606.03 + 3606.03i −0.405829 + 0.405829i
\(430\) 0 0
\(431\) 8245.08i 0.921465i 0.887539 + 0.460733i \(0.152413\pi\)
−0.887539 + 0.460733i \(0.847587\pi\)
\(432\) 0 0
\(433\) 6790.68i 0.753670i 0.926280 + 0.376835i \(0.122988\pi\)
−0.926280 + 0.376835i \(0.877012\pi\)
\(434\) 0 0
\(435\) 22323.2 + 22323.2i 2.46050 + 2.46050i
\(436\) 0 0
\(437\) 477.346 477.346i 0.0522530 0.0522530i
\(438\) 0 0
\(439\) 8798.44i 0.956553i 0.878209 + 0.478276i \(0.158738\pi\)
−0.878209 + 0.478276i \(0.841262\pi\)
\(440\) 0 0
\(441\) −16997.8 + 13979.9i −1.83542 + 1.50955i
\(442\) 0 0
\(443\) −11899.1 + 11899.1i −1.27617 + 1.27617i −0.333374 + 0.942795i \(0.608187\pi\)
−0.942795 + 0.333374i \(0.891813\pi\)
\(444\) 0 0
\(445\) 2898.08 2898.08i 0.308724 0.308724i
\(446\) 0 0
\(447\) 14670.1 1.55228
\(448\) 0 0
\(449\) −5778.61 −0.607370 −0.303685 0.952772i \(-0.598217\pi\)
−0.303685 + 0.952772i \(0.598217\pi\)
\(450\) 0 0
\(451\) −257.192 + 257.192i −0.0268529 + 0.0268529i
\(452\) 0 0
\(453\) 1828.46 1828.46i 0.189644 0.189644i
\(454\) 0 0
\(455\) −8579.62 + 18165.0i −0.883997 + 1.87162i
\(456\) 0 0
\(457\) 13073.2i 1.33816i 0.743190 + 0.669080i \(0.233312\pi\)
−0.743190 + 0.669080i \(0.766688\pi\)
\(458\) 0 0
\(459\) 4439.99 4439.99i 0.451506 0.451506i
\(460\) 0 0
\(461\) −4275.73 4275.73i −0.431976 0.431976i 0.457324 0.889300i \(-0.348808\pi\)
−0.889300 + 0.457324i \(0.848808\pi\)
\(462\) 0 0
\(463\) 7519.45i 0.754770i 0.926056 + 0.377385i \(0.123177\pi\)
−0.926056 + 0.377385i \(0.876823\pi\)
\(464\) 0 0
\(465\) 8819.64i 0.879572i
\(466\) 0 0
\(467\) 6745.11 6745.11i 0.668365 0.668365i −0.288972 0.957337i \(-0.593314\pi\)
0.957337 + 0.288972i \(0.0933135\pi\)
\(468\) 0 0
\(469\) 8880.40 3182.77i 0.874326 0.313362i
\(470\) 0 0
\(471\) −4865.74 −0.476012
\(472\) 0 0
\(473\) 1301.47i 0.126515i
\(474\) 0 0
\(475\) 6723.62 + 6723.62i 0.649475 + 0.649475i
\(476\) 0 0
\(477\) 32015.3 32015.3i 3.07312 3.07312i
\(478\) 0 0
\(479\) −5722.39 −0.545851 −0.272925 0.962035i \(-0.587991\pi\)
−0.272925 + 0.962035i \(0.587991\pi\)
\(480\) 0 0
\(481\) 13039.4i 1.23606i
\(482\) 0 0
\(483\) 448.161 + 1250.44i 0.0422196 + 0.117799i
\(484\) 0 0
\(485\) −15604.5 15604.5i −1.46096 1.46096i
\(486\) 0 0
\(487\) 14286.2 1.32930 0.664651 0.747154i \(-0.268580\pi\)
0.664651 + 0.747154i \(0.268580\pi\)
\(488\) 0 0
\(489\) 23700.3 2.19175
\(490\) 0 0
\(491\) 2041.06 2041.06i 0.187600 0.187600i −0.607057 0.794658i \(-0.707650\pi\)
0.794658 + 0.607057i \(0.207650\pi\)
\(492\) 0 0
\(493\) 2723.22 + 2723.22i 0.248778 + 0.248778i
\(494\) 0 0
\(495\) −7292.18 −0.662140
\(496\) 0 0
\(497\) 4789.58 10140.6i 0.432278 0.915230i
\(498\) 0 0
\(499\) −8527.48 8527.48i −0.765015 0.765015i 0.212209 0.977224i \(-0.431934\pi\)
−0.977224 + 0.212209i \(0.931934\pi\)
\(500\) 0 0
\(501\) 8654.36 + 8654.36i 0.771753 + 0.771753i
\(502\) 0 0
\(503\) 5920.19i 0.524788i −0.964961 0.262394i \(-0.915488\pi\)
0.964961 0.262394i \(-0.0845120\pi\)
\(504\) 0 0
\(505\) 701.380i 0.0618039i
\(506\) 0 0
\(507\) −19584.6 19584.6i −1.71555 1.71555i
\(508\) 0 0
\(509\) 6278.29 + 6278.29i 0.546719 + 0.546719i 0.925490 0.378771i \(-0.123653\pi\)
−0.378771 + 0.925490i \(0.623653\pi\)
\(510\) 0 0
\(511\) −7229.26 + 15306.0i −0.625839 + 1.32504i
\(512\) 0 0
\(513\) −31888.9 −2.74450
\(514\) 0 0
\(515\) −15970.9 15970.9i −1.36653 1.36653i
\(516\) 0 0
\(517\) 1347.52 1347.52i 0.114631 0.114631i
\(518\) 0 0
\(519\) −740.137 −0.0625981
\(520\) 0 0
\(521\) 6389.95 0.537330 0.268665 0.963234i \(-0.413418\pi\)
0.268665 + 0.963234i \(0.413418\pi\)
\(522\) 0 0
\(523\) −14557.4 14557.4i −1.21711 1.21711i −0.968638 0.248475i \(-0.920070\pi\)
−0.248475 0.968638i \(-0.579930\pi\)
\(524\) 0 0
\(525\) −17612.9 + 6312.54i −1.46417 + 0.524765i
\(526\) 0 0
\(527\) 1075.91i 0.0889325i
\(528\) 0 0
\(529\) −12110.6 −0.995362
\(530\) 0 0
\(531\) 7841.05 7841.05i 0.640815 0.640815i
\(532\) 0 0
\(533\) −2454.75 2454.75i −0.199488 0.199488i
\(534\) 0 0
\(535\) 20907.6i 1.68956i
\(536\) 0 0
\(537\) −20221.3 −1.62498
\(538\) 0 0
\(539\) 2553.78 + 248.792i 0.204080 + 0.0198817i
\(540\) 0 0
\(541\) −8616.54 + 8616.54i −0.684758 + 0.684758i −0.961068 0.276311i \(-0.910888\pi\)
0.276311 + 0.961068i \(0.410888\pi\)
\(542\) 0 0
\(543\) 41753.7i 3.29986i
\(544\) 0 0
\(545\) 5730.75i 0.450419i
\(546\) 0 0
\(547\) −14849.2 14849.2i −1.16071 1.16071i −0.984321 0.176386i \(-0.943559\pi\)
−0.176386 0.984321i \(-0.556441\pi\)
\(548\) 0 0
\(549\) −14648.7 + 14648.7i −1.13878 + 1.13878i
\(550\) 0 0
\(551\) 19558.7i 1.51221i
\(552\) 0 0
\(553\) −14825.6 7002.38i −1.14005 0.538465i
\(554\) 0 0
\(555\) 18732.2 18732.2i 1.43268 1.43268i
\(556\) 0 0
\(557\) −5671.99 + 5671.99i −0.431472 + 0.431472i −0.889129 0.457657i \(-0.848689\pi\)
0.457657 + 0.889129i \(0.348689\pi\)
\(558\) 0 0
\(559\) 12421.8 0.939866
\(560\) 0 0
\(561\) −1263.91 −0.0951198
\(562\) 0 0
\(563\) −9834.31 + 9834.31i −0.736175 + 0.736175i −0.971836 0.235660i \(-0.924275\pi\)
0.235660 + 0.971836i \(0.424275\pi\)
\(564\) 0 0
\(565\) −1008.34 + 1008.34i −0.0750819 + 0.0750819i
\(566\) 0 0
\(567\) 13095.0 27725.2i 0.969912 2.05352i
\(568\) 0 0
\(569\) 6475.74i 0.477112i 0.971129 + 0.238556i \(0.0766741\pi\)
−0.971129 + 0.238556i \(0.923326\pi\)
\(570\) 0 0
\(571\) −8459.33 + 8459.33i −0.619986 + 0.619986i −0.945528 0.325542i \(-0.894453\pi\)
0.325542 + 0.945528i \(0.394453\pi\)
\(572\) 0 0
\(573\) −5947.16 5947.16i −0.433588 0.433588i
\(574\) 0 0
\(575\) 794.802i 0.0576444i
\(576\) 0 0
\(577\) 20187.2i 1.45650i 0.685310 + 0.728252i \(0.259667\pi\)
−0.685310 + 0.728252i \(0.740333\pi\)
\(578\) 0 0
\(579\) −30806.6 + 30806.6i −2.21119 + 2.21119i
\(580\) 0 0
\(581\) −959.074 2675.96i −0.0684838 0.191080i
\(582\) 0 0
\(583\) −5278.63 −0.374989
\(584\) 0 0
\(585\) 69599.8i 4.91897i
\(586\) 0 0
\(587\) 1093.14 + 1093.14i 0.0768631 + 0.0768631i 0.744493 0.667630i \(-0.232691\pi\)
−0.667630 + 0.744493i \(0.732691\pi\)
\(588\) 0 0
\(589\) 3863.70 3863.70i 0.270290 0.270290i
\(590\) 0 0
\(591\) −15148.6 −1.05436
\(592\) 0 0
\(593\) 7713.84i 0.534181i 0.963671 + 0.267091i \(0.0860623\pi\)
−0.963671 + 0.267091i \(0.913938\pi\)
\(594\) 0 0
\(595\) −4686.97 + 1679.83i −0.322936 + 0.115742i
\(596\) 0 0
\(597\) 9425.16 + 9425.16i 0.646141 + 0.646141i
\(598\) 0 0
\(599\) 4556.07 0.310778 0.155389 0.987853i \(-0.450337\pi\)
0.155389 + 0.987853i \(0.450337\pi\)
\(600\) 0 0
\(601\) −21438.9 −1.45509 −0.727547 0.686058i \(-0.759340\pi\)
−0.727547 + 0.686058i \(0.759340\pi\)
\(602\) 0 0
\(603\) −23110.2 + 23110.2i −1.56073 + 1.56073i
\(604\) 0 0
\(605\) −13697.2 13697.2i −0.920450 0.920450i
\(606\) 0 0
\(607\) −18799.0 −1.25705 −0.628523 0.777791i \(-0.716340\pi\)
−0.628523 + 0.777791i \(0.716340\pi\)
\(608\) 0 0
\(609\) 34799.0 + 16436.1i 2.31548 + 1.09364i
\(610\) 0 0
\(611\) 12861.3 + 12861.3i 0.851578 + 0.851578i
\(612\) 0 0
\(613\) 2748.66 + 2748.66i 0.181105 + 0.181105i 0.791837 0.610732i \(-0.209125\pi\)
−0.610732 + 0.791837i \(0.709125\pi\)
\(614\) 0 0
\(615\) 7052.89i 0.462439i
\(616\) 0 0
\(617\) 6315.24i 0.412061i 0.978546 + 0.206031i \(0.0660547\pi\)
−0.978546 + 0.206031i \(0.933945\pi\)
\(618\) 0 0
\(619\) 14106.2 + 14106.2i 0.915955 + 0.915955i 0.996732 0.0807768i \(-0.0257401\pi\)
−0.0807768 + 0.996732i \(0.525740\pi\)
\(620\) 0 0
\(621\) −1884.80 1884.80i −0.121794 0.121794i
\(622\) 0 0
\(623\) 2133.79 4517.72i 0.137221 0.290528i
\(624\) 0 0
\(625\) 17655.8 1.12997
\(626\) 0 0
\(627\) 4538.81 + 4538.81i 0.289095 + 0.289095i
\(628\) 0 0
\(629\) 2285.14 2285.14i 0.144856 0.144856i
\(630\) 0 0
\(631\) −12921.9 −0.815232 −0.407616 0.913153i \(-0.633640\pi\)
−0.407616 + 0.913153i \(0.633640\pi\)
\(632\) 0 0
\(633\) −10314.2 −0.647634
\(634\) 0 0
\(635\) 195.308 + 195.308i 0.0122056 + 0.0122056i
\(636\) 0 0
\(637\) −2374.58 + 24374.4i −0.147699 + 1.51609i
\(638\) 0 0
\(639\) 38854.2i 2.40540i
\(640\) 0 0
\(641\) −2627.47 −0.161902 −0.0809509 0.996718i \(-0.525796\pi\)
−0.0809509 + 0.996718i \(0.525796\pi\)
\(642\) 0 0
\(643\) −365.321 + 365.321i −0.0224057 + 0.0224057i −0.718221 0.695815i \(-0.755043\pi\)
0.695815 + 0.718221i \(0.255043\pi\)
\(644\) 0 0
\(645\) 17844.9 + 17844.9i 1.08937 + 1.08937i
\(646\) 0 0
\(647\) 28089.2i 1.70680i −0.521254 0.853402i \(-0.674536\pi\)
0.521254 0.853402i \(-0.325464\pi\)
\(648\) 0 0
\(649\) −1292.82 −0.0781936
\(650\) 0 0
\(651\) 3627.47 + 10121.2i 0.218390 + 0.609340i
\(652\) 0 0
\(653\) −8988.84 + 8988.84i −0.538684 + 0.538684i −0.923142 0.384458i \(-0.874388\pi\)
0.384458 + 0.923142i \(0.374388\pi\)
\(654\) 0 0
\(655\) 21268.7i 1.26876i
\(656\) 0 0
\(657\) 58645.4i 3.48246i
\(658\) 0 0
\(659\) −18384.3 18384.3i −1.08672 1.08672i −0.995864 0.0908590i \(-0.971039\pi\)
−0.0908590 0.995864i \(-0.528961\pi\)
\(660\) 0 0
\(661\) −8728.20 + 8728.20i −0.513597 + 0.513597i −0.915627 0.402030i \(-0.868305\pi\)
0.402030 + 0.915627i \(0.368305\pi\)
\(662\) 0 0
\(663\) 12063.3i 0.706635i
\(664\) 0 0
\(665\) 22863.7 + 10798.9i 1.33326 + 0.629720i
\(666\) 0 0
\(667\) 1156.02 1156.02i 0.0671083 0.0671083i
\(668\) 0 0
\(669\) −25614.0 + 25614.0i −1.48026 + 1.48026i
\(670\) 0 0
\(671\) 2415.25 0.138956
\(672\) 0 0
\(673\) −11763.2 −0.673758 −0.336879 0.941548i \(-0.609371\pi\)
−0.336879 + 0.941548i \(0.609371\pi\)
\(674\) 0 0
\(675\) 26548.2 26548.2i 1.51384 1.51384i
\(676\) 0 0
\(677\) 2299.45 2299.45i 0.130539 0.130539i −0.638818 0.769358i \(-0.720577\pi\)
0.769358 + 0.638818i \(0.220577\pi\)
\(678\) 0 0
\(679\) −24325.4 11489.3i −1.37485 0.649363i
\(680\) 0 0
\(681\) 15478.7i 0.870992i
\(682\) 0 0
\(683\) −22496.7 + 22496.7i −1.26034 + 1.26034i −0.309410 + 0.950929i \(0.600132\pi\)
−0.950929 + 0.309410i \(0.899868\pi\)
\(684\) 0 0
\(685\) 29524.8 + 29524.8i 1.64684 + 1.64684i
\(686\) 0 0
\(687\) 28952.6i 1.60788i
\(688\) 0 0
\(689\) 50381.5i 2.78575i
\(690\) 0 0
\(691\) 7136.02 7136.02i 0.392861 0.392861i −0.482845 0.875706i \(-0.660397\pi\)
0.875706 + 0.482845i \(0.160397\pi\)
\(692\) 0 0
\(693\) −8368.32 + 2999.24i −0.458710 + 0.164404i
\(694\) 0 0
\(695\) 29147.6 1.59084
\(696\) 0 0
\(697\) 860.385i 0.0467567i
\(698\) 0 0
\(699\) −4151.19 4151.19i −0.224625 0.224625i
\(700\) 0 0
\(701\) 21007.7 21007.7i 1.13188 1.13188i 0.142017 0.989864i \(-0.454641\pi\)
0.989864 0.142017i \(-0.0453588\pi\)
\(702\) 0 0
\(703\) −16412.3 −0.880515
\(704\) 0 0
\(705\) 36952.7i 1.97407i
\(706\) 0 0
\(707\) 288.474 + 804.885i 0.0153454 + 0.0428159i
\(708\) 0 0
\(709\) 920.048 + 920.048i 0.0487350 + 0.0487350i 0.731054 0.682319i \(-0.239029\pi\)
−0.682319 + 0.731054i \(0.739029\pi\)
\(710\) 0 0
\(711\) 56804.9 2.99627
\(712\) 0 0
\(713\) 456.729 0.0239897
\(714\) 0 0
\(715\) −5737.75 + 5737.75i −0.300112 + 0.300112i
\(716\) 0 0
\(717\) −28788.1 28788.1i −1.49946 1.49946i
\(718\) 0 0
\(719\) 27809.1 1.44242 0.721212 0.692714i \(-0.243585\pi\)
0.721212 + 0.692714i \(0.243585\pi\)
\(720\) 0 0
\(721\) −24896.5 11759.0i −1.28598 0.607391i
\(722\) 0 0
\(723\) 18439.5 + 18439.5i 0.948510 + 0.948510i
\(724\) 0 0
\(725\) 16283.0 + 16283.0i 0.834119 + 0.834119i
\(726\) 0 0
\(727\) 23899.8i 1.21925i 0.792691 + 0.609624i \(0.208680\pi\)
−0.792691 + 0.609624i \(0.791320\pi\)
\(728\) 0 0
\(729\) 14753.2i 0.749539i
\(730\) 0 0
\(731\) 2176.91 + 2176.91i 0.110145 + 0.110145i
\(732\) 0 0
\(733\) 799.842 + 799.842i 0.0403040 + 0.0403040i 0.726972 0.686668i \(-0.240927\pi\)
−0.686668 + 0.726972i \(0.740927\pi\)
\(734\) 0 0
\(735\) −38427.1 + 31604.5i −1.92844 + 1.58606i
\(736\) 0 0
\(737\) 3810.38 0.190444
\(738\) 0 0
\(739\) −8049.79 8049.79i −0.400699 0.400699i 0.477781 0.878479i \(-0.341441\pi\)
−0.878479 + 0.477781i \(0.841441\pi\)
\(740\) 0 0
\(741\) −43320.3 + 43320.3i −2.14766 + 2.14766i
\(742\) 0 0
\(743\) −35083.7 −1.73229 −0.866147 0.499789i \(-0.833411\pi\)
−0.866147 + 0.499789i \(0.833411\pi\)
\(744\) 0 0
\(745\) 23342.3 1.14792
\(746\) 0 0
\(747\) 6963.88 + 6963.88i 0.341091 + 0.341091i
\(748\) 0 0
\(749\) 8599.17 + 23993.0i 0.419502 + 1.17047i
\(750\) 0 0
\(751\) 15178.6i 0.737518i −0.929525 0.368759i \(-0.879783\pi\)
0.929525 0.368759i \(-0.120217\pi\)
\(752\) 0 0
\(753\) 13167.0 0.637225
\(754\) 0 0
\(755\) 2909.37 2909.37i 0.140242 0.140242i
\(756\) 0 0
\(757\) 4237.45 + 4237.45i 0.203451 + 0.203451i 0.801477 0.598026i \(-0.204048\pi\)
−0.598026 + 0.801477i \(0.704048\pi\)
\(758\) 0 0
\(759\) 536.534i 0.0256587i
\(760\) 0 0
\(761\) −12456.8 −0.593378 −0.296689 0.954974i \(-0.595882\pi\)
−0.296689 + 0.954974i \(0.595882\pi\)
\(762\) 0 0
\(763\) 2357.03 + 6576.46i 0.111835 + 0.312037i
\(764\) 0 0
\(765\) 12197.3 12197.3i 0.576463 0.576463i
\(766\) 0 0
\(767\) 12339.2i 0.580892i
\(768\) 0 0
\(769\) 7576.59i 0.355291i −0.984095 0.177645i \(-0.943152\pi\)
0.984095 0.177645i \(-0.0568480\pi\)
\(770\) 0 0
\(771\) 43975.9 + 43975.9i 2.05415 + 2.05415i
\(772\) 0 0
\(773\) 13423.2 13423.2i 0.624580 0.624580i −0.322119 0.946699i \(-0.604395\pi\)
0.946699 + 0.322119i \(0.104395\pi\)
\(774\) 0 0
\(775\) 6433.22i 0.298178i
\(776\) 0 0
\(777\) 13792.1 29201.0i 0.636794 1.34824i
\(778\) 0 0
\(779\) −3089.72 + 3089.72i −0.142106 + 0.142106i
\(780\) 0 0
\(781\) 3203.11 3203.11i 0.146756 0.146756i
\(782\) 0 0
\(783\) −77227.3 −3.52475
\(784\) 0 0
\(785\) −7742.15 −0.352012
\(786\) 0 0
\(787\) −9970.27 + 9970.27i −0.451591 + 0.451591i −0.895882 0.444292i \(-0.853455\pi\)
0.444292 + 0.895882i \(0.353455\pi\)
\(788\) 0 0
\(789\) 5415.04 5415.04i 0.244335 0.244335i
\(790\) 0 0
\(791\) −742.422 + 1571.87i −0.0333723 + 0.0706567i
\(792\) 0 0
\(793\) 23052.2i 1.03229i
\(794\) 0 0
\(795\) 72377.1 72377.1i 3.22887 3.22887i
\(796\) 0 0
\(797\) −24511.9 24511.9i −1.08941 1.08941i −0.995590 0.0938157i \(-0.970094\pi\)
−0.0938157 0.995590i \(-0.529906\pi\)
\(798\) 0 0
\(799\) 4507.88i 0.199596i
\(800\) 0 0
\(801\) 17309.8i 0.763561i
\(802\) 0 0
\(803\) −4834.68 + 4834.68i −0.212468 + 0.212468i
\(804\) 0 0
\(805\) 713.094 + 1989.64i 0.0312215 + 0.0871125i
\(806\) 0 0
\(807\) −27409.5 −1.19562
\(808\) 0 0
\(809\) 34908.0i 1.51706i 0.651640 + 0.758529i \(0.274081\pi\)
−0.651640 + 0.758529i \(0.725919\pi\)
\(810\) 0 0
\(811\) 12610.4 + 12610.4i 0.546004 + 0.546004i 0.925283 0.379278i \(-0.123828\pi\)
−0.379278 + 0.925283i \(0.623828\pi\)
\(812\) 0 0
\(813\) 16540.0 16540.0i 0.713511 0.713511i
\(814\) 0 0
\(815\) 37710.8 1.62080
\(816\) 0 0
\(817\) 15634.9i 0.669519i
\(818\) 0 0
\(819\) −28626.0 79870.9i −1.22134 3.40771i
\(820\) 0 0
\(821\) −23212.1 23212.1i −0.986731 0.986731i 0.0131819 0.999913i \(-0.495804\pi\)
−0.999913 + 0.0131819i \(0.995804\pi\)
\(822\) 0 0
\(823\) −13666.7 −0.578849 −0.289425 0.957201i \(-0.593464\pi\)
−0.289425 + 0.957201i \(0.593464\pi\)
\(824\) 0 0
\(825\) −7557.31 −0.318923
\(826\) 0 0
\(827\) 19896.8 19896.8i 0.836615 0.836615i −0.151796 0.988412i \(-0.548506\pi\)
0.988412 + 0.151796i \(0.0485058\pi\)
\(828\) 0 0
\(829\) 29292.8 + 29292.8i 1.22724 + 1.22724i 0.965005 + 0.262233i \(0.0844588\pi\)
0.262233 + 0.965005i \(0.415541\pi\)
\(830\) 0 0
\(831\) 51375.0 2.14462
\(832\) 0 0
\(833\) −4687.74 + 3855.45i −0.194983 + 0.160364i
\(834\) 0 0
\(835\) 13770.4 + 13770.4i 0.570713 + 0.570713i
\(836\) 0 0
\(837\) −15255.8 15255.8i −0.630008 0.630008i
\(838\) 0 0
\(839\) 23024.9i 0.947447i −0.880674 0.473723i \(-0.842910\pi\)
0.880674 0.473723i \(-0.157090\pi\)
\(840\) 0 0
\(841\) 22977.5i 0.942127i
\(842\) 0 0
\(843\) 36926.2 + 36926.2i 1.50867 + 1.50867i
\(844\) 0 0
\(845\) −31162.1 31162.1i −1.26865 1.26865i
\(846\) 0 0
\(847\) −21352.2 10085.0i −0.866199 0.409120i
\(848\) 0 0
\(849\) −40473.9 −1.63611
\(850\) 0 0
\(851\) −970.054 970.054i −0.0390752 0.0390752i
\(852\) 0 0
\(853\) −19763.3 + 19763.3i −0.793298 + 0.793298i −0.982029 0.188730i \(-0.939563\pi\)
0.188730 + 0.982029i \(0.439563\pi\)
\(854\) 0 0
\(855\) −87603.2 −3.50406
\(856\) 0 0
\(857\) 20283.0 0.808464 0.404232 0.914656i \(-0.367539\pi\)
0.404232 + 0.914656i \(0.367539\pi\)
\(858\) 0 0
\(859\) −30204.5 30204.5i −1.19973 1.19973i −0.974248 0.225478i \(-0.927606\pi\)
−0.225478 0.974248i \(-0.572394\pi\)
\(860\) 0 0
\(861\) −2900.82 8093.71i −0.114819 0.320363i
\(862\) 0 0
\(863\) 4343.51i 0.171326i 0.996324 + 0.0856632i \(0.0273009\pi\)
−0.996324 + 0.0856632i \(0.972699\pi\)
\(864\) 0 0
\(865\) −1177.67 −0.0462914
\(866\) 0 0
\(867\) −31055.8 + 31055.8i −1.21650 + 1.21650i
\(868\) 0 0
\(869\) −4682.95 4682.95i −0.182806 0.182806i
\(870\) 0 0
\(871\) 36367.9i 1.41479i
\(872\) 0 0
\(873\) 93203.5 3.61336
\(874\) 0 0
\(875\) 5083.62 1821.99i 0.196409 0.0703936i
\(876\) 0 0
\(877\) 10248.6 10248.6i 0.394608 0.394608i −0.481718 0.876326i \(-0.659987\pi\)
0.876326 + 0.481718i \(0.159987\pi\)
\(878\) 0 0
\(879\) 64503.8i 2.47515i
\(880\) 0 0
\(881\) 39067.0i 1.49399i 0.664832 + 0.746993i \(0.268503\pi\)
−0.664832 + 0.746993i \(0.731497\pi\)
\(882\) 0 0
\(883\) 33173.0 + 33173.0i 1.26428 + 1.26428i 0.948998 + 0.315283i \(0.102099\pi\)
0.315283 + 0.948998i \(0.397901\pi\)
\(884\) 0 0
\(885\) 17726.3 17726.3i 0.673292 0.673292i
\(886\) 0 0
\(887\) 31068.0i 1.17606i −0.808841 0.588028i \(-0.799905\pi\)
0.808841 0.588028i \(-0.200095\pi\)
\(888\) 0 0
\(889\) 304.460 + 143.801i 0.0114862 + 0.00542513i
\(890\) 0 0
\(891\) 8757.52 8757.52i 0.329279 0.329279i
\(892\) 0 0
\(893\) 16188.2 16188.2i 0.606627 0.606627i
\(894\) 0 0
\(895\) −32175.2 −1.20167
\(896\) 0 0
\(897\) −5120.92 −0.190616
\(898\) 0 0
\(899\) 9356.97 9356.97i 0.347133 0.347133i
\(900\) 0 0
\(901\) 8829.32 8829.32i 0.326468 0.326468i
\(902\) 0 0
\(903\) 27817.8 + 13138.8i 1.02516 + 0.484200i
\(904\) 0 0
\(905\) 66436.6i 2.44025i
\(906\) 0 0
\(907\) −7883.36 + 7883.36i −0.288603 + 0.288603i −0.836528 0.547925i \(-0.815418\pi\)
0.547925 + 0.836528i \(0.315418\pi\)
\(908\) 0 0
\(909\) −2094.62 2094.62i −0.0764293 0.0764293i
\(910\) 0 0
\(911\) 54680.2i 1.98862i −0.106517 0.994311i \(-0.533970\pi\)
0.106517 0.994311i \(-0.466030\pi\)
\(912\) 0 0
\(913\) 1148.19i 0.0416207i
\(914\) 0 0
\(915\) −33116.4 + 33116.4i −1.19650 + 1.19650i
\(916\) 0 0
\(917\) 8747.70 + 24407.4i 0.315021 + 0.878956i
\(918\) 0 0
\(919\) −3540.65 −0.127090 −0.0635448 0.997979i \(-0.520241\pi\)
−0.0635448 + 0.997979i \(0.520241\pi\)
\(920\) 0 0
\(921\) 18662.4i 0.667696i
\(922\) 0 0
\(923\) 30571.9 + 30571.9i 1.09023 + 1.09023i
\(924\) 0 0
\(925\) 13663.6 13663.6i 0.485683 0.485683i
\(926\) 0 0
\(927\) 95391.9 3.37981
\(928\) 0 0
\(929\) 16349.4i 0.577404i 0.957419 + 0.288702i \(0.0932236\pi\)
−0.957419 + 0.288702i \(0.906776\pi\)
\(930\) 0 0
\(931\) 30679.4 + 2988.81i 1.08000 + 0.105214i
\(932\) 0 0
\(933\) 27768.9 + 27768.9i 0.974398 + 0.974398i
\(934\) 0 0
\(935\) −2011.07 −0.0703413
\(936\) 0 0
\(937\) 9033.40 0.314950 0.157475 0.987523i \(-0.449665\pi\)
0.157475 + 0.987523i \(0.449665\pi\)
\(938\) 0 0
\(939\) 7987.93 7987.93i 0.277611 0.277611i
\(940\) 0 0
\(941\) −15317.5 15317.5i −0.530644 0.530644i 0.390120 0.920764i \(-0.372434\pi\)
−0.920764 + 0.390120i \(0.872434\pi\)
\(942\) 0 0
\(943\) −365.237 −0.0126127
\(944\) 0 0
\(945\) 42639.5 90277.4i 1.46779 3.10764i
\(946\) 0 0
\(947\) −15099.6 15099.6i −0.518131 0.518131i 0.398875 0.917005i \(-0.369401\pi\)
−0.917005 + 0.398875i \(0.869401\pi\)
\(948\) 0 0
\(949\) −46144.3 46144.3i −1.57841 1.57841i
\(950\) 0 0
\(951\) 20773.8i 0.708345i
\(952\) 0 0
\(953\) 29129.5i 0.990133i 0.868855 + 0.495067i \(0.164856\pi\)
−0.868855 + 0.495067i \(0.835144\pi\)
\(954\) 0 0
\(955\) −9462.85 9462.85i −0.320639 0.320639i
\(956\) 0 0
\(957\) 10991.9 + 10991.9i 0.371284 + 0.371284i
\(958\) 0 0
\(959\) 46025.3 + 21738.5i 1.54977 + 0.731984i
\(960\) 0 0
\(961\) −26094.2 −0.875908
\(962\) 0 0
\(963\) −62439.0 62439.0i −2.08937 2.08937i
\(964\) 0 0
\(965\) −49018.1 + 49018.1i −1.63518 + 1.63518i
\(966\) 0 0
\(967\) 43742.0 1.45465 0.727325 0.686293i \(-0.240763\pi\)
0.727325 + 0.686293i \(0.240763\pi\)
\(968\) 0 0
\(969\) −15183.7 −0.503375
\(970\) 0 0
\(971\) −8883.28 8883.28i −0.293592 0.293592i 0.544905 0.838498i \(-0.316566\pi\)
−0.838498 + 0.544905i \(0.816566\pi\)
\(972\) 0 0
\(973\) 33449.0 11988.3i 1.10208 0.394991i
\(974\) 0 0
\(975\) 72130.3i 2.36925i
\(976\) 0 0
\(977\) 307.596 0.0100725 0.00503627 0.999987i \(-0.498397\pi\)
0.00503627 + 0.999987i \(0.498397\pi\)
\(978\) 0 0
\(979\) 1427.01 1427.01i 0.0465857 0.0465857i
\(980\) 0 0
\(981\) −17114.5 17114.5i −0.557007 0.557007i
\(982\) 0 0
\(983\) 29915.4i 0.970653i −0.874333 0.485327i \(-0.838701\pi\)
0.874333 0.485327i \(-0.161299\pi\)
\(984\) 0 0
\(985\) −24103.7 −0.779704
\(986\) 0 0
\(987\) 15198.5 + 42406.0i 0.490144 + 1.36758i
\(988\) 0 0
\(989\) 924.106 924.106i 0.0297117 0.0297117i
\(990\) 0 0
\(991\) 40094.7i 1.28522i 0.766195 + 0.642609i \(0.222148\pi\)
−0.766195 + 0.642609i \(0.777852\pi\)
\(992\) 0 0
\(993\) 25260.5i 0.807267i
\(994\) 0 0
\(995\) 14996.9 + 14996.9i 0.477823 + 0.477823i
\(996\) 0 0
\(997\) 28430.3 28430.3i 0.903107 0.903107i −0.0925966 0.995704i \(-0.529517\pi\)
0.995704 + 0.0925966i \(0.0295167\pi\)
\(998\) 0 0
\(999\) 64804.0i 2.05236i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.4.j.b.335.2 88
4.3 odd 2 112.4.j.b.27.6 yes 88
7.6 odd 2 inner 448.4.j.b.335.43 88
16.3 odd 4 inner 448.4.j.b.111.43 88
16.13 even 4 112.4.j.b.83.5 yes 88
28.27 even 2 112.4.j.b.27.5 88
112.13 odd 4 112.4.j.b.83.6 yes 88
112.83 even 4 inner 448.4.j.b.111.2 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.4.j.b.27.5 88 28.27 even 2
112.4.j.b.27.6 yes 88 4.3 odd 2
112.4.j.b.83.5 yes 88 16.13 even 4
112.4.j.b.83.6 yes 88 112.13 odd 4
448.4.j.b.111.2 88 112.83 even 4 inner
448.4.j.b.111.43 88 16.3 odd 4 inner
448.4.j.b.335.2 88 1.1 even 1 trivial
448.4.j.b.335.43 88 7.6 odd 2 inner