L(s) = 1 | + (0.793 + 0.458i)2-s + (−0.580 − 1.00i)4-s + (3.41 + 0.915i)5-s + (−0.340 + 0.0913i)7-s − 2.89i·8-s + (2.29 + 2.29i)10-s + (3.14 − 0.843i)11-s + (−2.19 − 3.79i)13-s + (−0.312 − 0.0836i)14-s + (0.165 − 0.286i)16-s + (−0.593 + 4.08i)17-s + 3.53i·19-s + (−1.06 − 3.96i)20-s + (2.88 + 0.772i)22-s + (1.54 − 5.78i)23-s + ⋯ |
L(s) = 1 | + (0.560 + 0.323i)2-s + (−0.290 − 0.502i)4-s + (1.52 + 0.409i)5-s + (−0.128 + 0.0345i)7-s − 1.02i·8-s + (0.724 + 0.724i)10-s + (0.948 − 0.254i)11-s + (−0.607 − 1.05i)13-s + (−0.0834 − 0.0223i)14-s + (0.0412 − 0.0715i)16-s + (−0.144 + 0.989i)17-s + 0.810i·19-s + (−0.237 − 0.886i)20-s + (0.614 + 0.164i)22-s + (0.323 − 1.20i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0856i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 + 0.0856i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.17575 - 0.0933474i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.17575 - 0.0933474i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 17 | \( 1 + (0.593 - 4.08i)T \) |
good | 2 | \( 1 + (-0.793 - 0.458i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-3.41 - 0.915i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (0.340 - 0.0913i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (-3.14 + 0.843i)T + (9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (2.19 + 3.79i)T + (-6.5 + 11.2i)T^{2} \) |
| 19 | \( 1 - 3.53iT - 19T^{2} \) |
| 23 | \( 1 + (-1.54 + 5.78i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-0.880 - 3.28i)T + (-25.1 + 14.5i)T^{2} \) |
| 31 | \( 1 + (-6.39 - 1.71i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (1.16 - 1.16i)T - 37iT^{2} \) |
| 41 | \( 1 + (-1.59 + 5.95i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (4.98 + 2.87i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.45 - 2.51i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 11.0iT - 53T^{2} \) |
| 59 | \( 1 + (-2.82 + 1.62i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.30 - 1.15i)T + (52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (5.68 + 9.84i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3.98 - 3.98i)T - 71iT^{2} \) |
| 73 | \( 1 + (10.0 - 10.0i)T - 73iT^{2} \) |
| 79 | \( 1 + (10.7 - 2.88i)T + (68.4 - 39.5i)T^{2} \) |
| 83 | \( 1 + (3.56 + 2.05i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 1.04T + 89T^{2} \) |
| 97 | \( 1 + (-1.26 - 4.73i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58451675297791856152567279518, −10.27474465999293700907945852064, −9.422383637398046851902062056465, −8.485008909086342260566254969802, −6.89277274403206866523261800611, −6.15935656768773145429534765344, −5.59997283986505260155478654743, −4.44930020511182834720561086163, −3.01707269408466727180322586996, −1.45585544602072140026150270703,
1.79363443633336014439636301581, 2.92413384414537863941989564852, 4.43682922561133898465165192739, 5.09360205898992430058452561122, 6.29056125133981738893007985250, 7.22653159007599022551830687936, 8.665747831704375597574333569076, 9.428307670877771941860172745151, 9.857915720300607951541773266275, 11.56501271069805686489849497478