L(s) = 1 | + (−0.218 − 0.126i)2-s + (−0.968 − 1.67i)4-s + (3.83 + 1.02i)5-s + (2.05 − 0.551i)7-s + 0.995i·8-s + (−0.709 − 0.709i)10-s + (−1.14 + 0.307i)11-s + (3.09 + 5.36i)13-s + (−0.520 − 0.139i)14-s + (−1.81 + 3.13i)16-s + (−2.45 − 3.31i)17-s − 5.66i·19-s + (−1.98 − 7.41i)20-s + (0.290 + 0.0778i)22-s + (0.188 − 0.703i)23-s + ⋯ |
L(s) = 1 | + (−0.154 − 0.0893i)2-s + (−0.484 − 0.838i)4-s + (1.71 + 0.459i)5-s + (0.778 − 0.208i)7-s + 0.351i·8-s + (−0.224 − 0.224i)10-s + (−0.346 + 0.0928i)11-s + (0.858 + 1.48i)13-s + (−0.139 − 0.0372i)14-s + (−0.452 + 0.783i)16-s + (−0.595 − 0.803i)17-s − 1.29i·19-s + (−0.444 − 1.65i)20-s + (0.0619 + 0.0165i)22-s + (0.0392 − 0.146i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.929 + 0.369i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.929 + 0.369i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.62156 - 0.310995i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.62156 - 0.310995i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 17 | \( 1 + (2.45 + 3.31i)T \) |
good | 2 | \( 1 + (0.218 + 0.126i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-3.83 - 1.02i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (-2.05 + 0.551i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (1.14 - 0.307i)T + (9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (-3.09 - 5.36i)T + (-6.5 + 11.2i)T^{2} \) |
| 19 | \( 1 + 5.66iT - 19T^{2} \) |
| 23 | \( 1 + (-0.188 + 0.703i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-0.799 - 2.98i)T + (-25.1 + 14.5i)T^{2} \) |
| 31 | \( 1 + (-0.0434 - 0.0116i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (-1.68 + 1.68i)T - 37iT^{2} \) |
| 41 | \( 1 + (-0.174 + 0.650i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (0.442 + 0.255i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.74 + 8.21i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 7.10iT - 53T^{2} \) |
| 59 | \( 1 + (7.91 - 4.56i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.59 - 1.49i)T + (52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (1.68 + 2.92i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.32 - 2.32i)T - 71iT^{2} \) |
| 73 | \( 1 + (8.24 - 8.24i)T - 73iT^{2} \) |
| 79 | \( 1 + (0.124 - 0.0332i)T + (68.4 - 39.5i)T^{2} \) |
| 83 | \( 1 + (5.37 + 3.10i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 8.09T + 89T^{2} \) |
| 97 | \( 1 + (-1.05 - 3.94i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89187803746652319884107200636, −10.10979252240225599494109411965, −9.165210863860440807267835926471, −8.827718459734963039858623891937, −7.03690286083764834488021018702, −6.30728772968983756598432663810, −5.28779307087957943832397256169, −4.51083958568445782618484724248, −2.42712187370288480166860743304, −1.46834122641862635276485038944,
1.52047536682668799647628589153, 2.94785054804758133160795683632, 4.43043738345262094201423221727, 5.55916425024461958268148159801, 6.16356750013453104279419128950, 7.84948267549001615392883385137, 8.373883994935182036573603137016, 9.219087528855299942006236687120, 10.15614619939716211817580812035, 10.88197611327407949004402447276