L(s) = 1 | + (−0.218 − 0.126i)2-s + (−0.968 − 1.67i)4-s + (3.83 + 1.02i)5-s + (2.05 − 0.551i)7-s + 0.995i·8-s + (−0.709 − 0.709i)10-s + (−1.14 + 0.307i)11-s + (3.09 + 5.36i)13-s + (−0.520 − 0.139i)14-s + (−1.81 + 3.13i)16-s + (−2.45 − 3.31i)17-s − 5.66i·19-s + (−1.98 − 7.41i)20-s + (0.290 + 0.0778i)22-s + (0.188 − 0.703i)23-s + ⋯ |
L(s) = 1 | + (−0.154 − 0.0893i)2-s + (−0.484 − 0.838i)4-s + (1.71 + 0.459i)5-s + (0.778 − 0.208i)7-s + 0.351i·8-s + (−0.224 − 0.224i)10-s + (−0.346 + 0.0928i)11-s + (0.858 + 1.48i)13-s + (−0.139 − 0.0372i)14-s + (−0.452 + 0.783i)16-s + (−0.595 − 0.803i)17-s − 1.29i·19-s + (−0.444 − 1.65i)20-s + (0.0619 + 0.0165i)22-s + (0.0392 − 0.146i)23-s + ⋯ |
Λ(s)=(=(459s/2ΓC(s)L(s)(0.929+0.369i)Λ(2−s)
Λ(s)=(=(459s/2ΓC(s+1/2)L(s)(0.929+0.369i)Λ(1−s)
Degree: |
2 |
Conductor: |
459
= 33⋅17
|
Sign: |
0.929+0.369i
|
Analytic conductor: |
3.66513 |
Root analytic conductor: |
1.91445 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ459(208,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 459, ( :1/2), 0.929+0.369i)
|
Particular Values
L(1) |
≈ |
1.62156−0.310995i |
L(21) |
≈ |
1.62156−0.310995i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 17 | 1+(2.45+3.31i)T |
good | 2 | 1+(0.218+0.126i)T+(1+1.73i)T2 |
| 5 | 1+(−3.83−1.02i)T+(4.33+2.5i)T2 |
| 7 | 1+(−2.05+0.551i)T+(6.06−3.5i)T2 |
| 11 | 1+(1.14−0.307i)T+(9.52−5.5i)T2 |
| 13 | 1+(−3.09−5.36i)T+(−6.5+11.2i)T2 |
| 19 | 1+5.66iT−19T2 |
| 23 | 1+(−0.188+0.703i)T+(−19.9−11.5i)T2 |
| 29 | 1+(−0.799−2.98i)T+(−25.1+14.5i)T2 |
| 31 | 1+(−0.0434−0.0116i)T+(26.8+15.5i)T2 |
| 37 | 1+(−1.68+1.68i)T−37iT2 |
| 41 | 1+(−0.174+0.650i)T+(−35.5−20.5i)T2 |
| 43 | 1+(0.442+0.255i)T+(21.5+37.2i)T2 |
| 47 | 1+(−4.74+8.21i)T+(−23.5−40.7i)T2 |
| 53 | 1+7.10iT−53T2 |
| 59 | 1+(7.91−4.56i)T+(29.5−51.0i)T2 |
| 61 | 1+(5.59−1.49i)T+(52.8−30.5i)T2 |
| 67 | 1+(1.68+2.92i)T+(−33.5+58.0i)T2 |
| 71 | 1+(2.32−2.32i)T−71iT2 |
| 73 | 1+(8.24−8.24i)T−73iT2 |
| 79 | 1+(0.124−0.0332i)T+(68.4−39.5i)T2 |
| 83 | 1+(5.37+3.10i)T+(41.5+71.8i)T2 |
| 89 | 1+8.09T+89T2 |
| 97 | 1+(−1.05−3.94i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89187803746652319884107200636, −10.10979252240225599494109411965, −9.165210863860440807267835926471, −8.827718459734963039858623891937, −7.03690286083764834488021018702, −6.30728772968983756598432663810, −5.28779307087957943832397256169, −4.51083958568445782618484724248, −2.42712187370288480166860743304, −1.46834122641862635276485038944,
1.52047536682668799647628589153, 2.94785054804758133160795683632, 4.43043738345262094201423221727, 5.55916425024461958268148159801, 6.16356750013453104279419128950, 7.84948267549001615392883385137, 8.373883994935182036573603137016, 9.219087528855299942006236687120, 10.15614619939716211817580812035, 10.88197611327407949004402447276