L(s) = 1 | + (1.92 + 1.10i)2-s + (1.45 + 2.52i)4-s + (0.680 + 0.182i)5-s + (2.07 − 0.556i)7-s + 2.04i·8-s + (1.10 + 1.10i)10-s + (−1.34 + 0.360i)11-s + (0.789 + 1.36i)13-s + (4.60 + 1.23i)14-s + (0.657 − 1.13i)16-s + (−0.767 + 4.05i)17-s − 0.618i·19-s + (0.532 + 1.98i)20-s + (−2.98 − 0.798i)22-s + (−0.903 + 3.37i)23-s + ⋯ |
L(s) = 1 | + (1.35 + 0.784i)2-s + (0.729 + 1.26i)4-s + (0.304 + 0.0815i)5-s + (0.784 − 0.210i)7-s + 0.721i·8-s + (0.349 + 0.349i)10-s + (−0.405 + 0.108i)11-s + (0.218 + 0.379i)13-s + (1.23 + 0.329i)14-s + (0.164 − 0.284i)16-s + (−0.186 + 0.982i)17-s − 0.141i·19-s + (0.119 + 0.444i)20-s + (−0.635 − 0.170i)22-s + (−0.188 + 0.703i)23-s + ⋯ |
Λ(s)=(=(459s/2ΓC(s)L(s)(0.451−0.892i)Λ(2−s)
Λ(s)=(=(459s/2ΓC(s+1/2)L(s)(0.451−0.892i)Λ(1−s)
Degree: |
2 |
Conductor: |
459
= 33⋅17
|
Sign: |
0.451−0.892i
|
Analytic conductor: |
3.66513 |
Root analytic conductor: |
1.91445 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ459(208,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 459, ( :1/2), 0.451−0.892i)
|
Particular Values
L(1) |
≈ |
2.61403+1.60785i |
L(21) |
≈ |
2.61403+1.60785i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 17 | 1+(0.767−4.05i)T |
good | 2 | 1+(−1.92−1.10i)T+(1+1.73i)T2 |
| 5 | 1+(−0.680−0.182i)T+(4.33+2.5i)T2 |
| 7 | 1+(−2.07+0.556i)T+(6.06−3.5i)T2 |
| 11 | 1+(1.34−0.360i)T+(9.52−5.5i)T2 |
| 13 | 1+(−0.789−1.36i)T+(−6.5+11.2i)T2 |
| 19 | 1+0.618iT−19T2 |
| 23 | 1+(0.903−3.37i)T+(−19.9−11.5i)T2 |
| 29 | 1+(2.71+10.1i)T+(−25.1+14.5i)T2 |
| 31 | 1+(6.01+1.61i)T+(26.8+15.5i)T2 |
| 37 | 1+(2.82−2.82i)T−37iT2 |
| 41 | 1+(−0.573+2.14i)T+(−35.5−20.5i)T2 |
| 43 | 1+(−4.30−2.48i)T+(21.5+37.2i)T2 |
| 47 | 1+(−4.53+7.85i)T+(−23.5−40.7i)T2 |
| 53 | 1−12.8iT−53T2 |
| 59 | 1+(−5.64+3.25i)T+(29.5−51.0i)T2 |
| 61 | 1+(2.85−0.765i)T+(52.8−30.5i)T2 |
| 67 | 1+(5.68+9.83i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−5.47+5.47i)T−71iT2 |
| 73 | 1+(−4.12+4.12i)T−73iT2 |
| 79 | 1+(7.43−1.99i)T+(68.4−39.5i)T2 |
| 83 | 1+(2.68+1.55i)T+(41.5+71.8i)T2 |
| 89 | 1−8.02T+89T2 |
| 97 | 1+(4.51+16.8i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.47401743215686876018130758272, −10.49977837013861379326900212522, −9.385723478968790951158652065925, −8.045004932605389128719014156310, −7.42965489996910369379145656128, −6.22912310332799484723772855290, −5.61383821549695642246494884355, −4.50631421608278635994374135295, −3.73995211176008239367703585853, −2.08699429884232938178016636614,
1.71582785641283146746764518306, 2.85744824333333144559321225305, 4.01240951659053631229838383996, 5.19811452462364304998447018547, 5.56355666360427030368731860429, 7.00117605332359937190421560101, 8.202219726853843043967538393722, 9.244764318747041127456703220128, 10.49949464985746467935989886814, 11.08366611472603341204853046084