L(s) = 1 | + 4-s + 5-s − 2·11-s − 13-s + 16-s − 17-s − 19-s + 20-s + 23-s + 29-s + 41-s − 43-s − 2·44-s + 49-s − 52-s − 2·55-s + 64-s − 65-s − 67-s − 68-s + 71-s − 76-s + 80-s − 85-s + 92-s − 95-s − 103-s + ⋯ |
L(s) = 1 | + 4-s + 5-s − 2·11-s − 13-s + 16-s − 17-s − 19-s + 20-s + 23-s + 29-s + 41-s − 43-s − 2·44-s + 49-s − 52-s − 2·55-s + 64-s − 65-s − 67-s − 68-s + 71-s − 76-s + 80-s − 85-s + 92-s − 95-s − 103-s + ⋯ |
Λ(s)=(=(459s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(459s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
459
= 33⋅17
|
Sign: |
1
|
Analytic conductor: |
0.229070 |
Root analytic conductor: |
0.478613 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ459(458,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 459, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.074505684 |
L(21) |
≈ |
1.074505684 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 17 | 1+T |
good | 2 | (1−T)(1+T) |
| 5 | 1−T+T2 |
| 7 | (1−T)(1+T) |
| 11 | (1+T)2 |
| 13 | 1+T+T2 |
| 19 | 1+T+T2 |
| 23 | 1−T+T2 |
| 29 | 1−T+T2 |
| 31 | (1−T)(1+T) |
| 37 | (1−T)(1+T) |
| 41 | 1−T+T2 |
| 43 | 1+T+T2 |
| 47 | (1−T)(1+T) |
| 53 | (1−T)(1+T) |
| 59 | (1−T)(1+T) |
| 61 | (1−T)(1+T) |
| 67 | 1+T+T2 |
| 71 | 1−T+T2 |
| 73 | (1−T)(1+T) |
| 79 | (1−T)(1+T) |
| 83 | (1−T)(1+T) |
| 89 | (1−T)(1+T) |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.98332821954406819926729736269, −10.49809225540244982376634530742, −9.743262152239776875460018324323, −8.496183220853762622292772169540, −7.51061952797034652984045972716, −6.64264709677162462110086688267, −5.67142322826064861440926168592, −4.78240329404948759354773029217, −2.74916842416376406048180467989, −2.19015086381984588647439184289,
2.19015086381984588647439184289, 2.74916842416376406048180467989, 4.78240329404948759354773029217, 5.67142322826064861440926168592, 6.64264709677162462110086688267, 7.51061952797034652984045972716, 8.496183220853762622292772169540, 9.743262152239776875460018324323, 10.49809225540244982376634530742, 10.98332821954406819926729736269