Properties

Label 2-459-51.50-c0-0-1
Degree $2$
Conductor $459$
Sign $1$
Analytic cond. $0.229070$
Root an. cond. $0.478613$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 5-s − 2·11-s − 13-s + 16-s − 17-s − 19-s + 20-s + 23-s + 29-s + 41-s − 43-s − 2·44-s + 49-s − 52-s − 2·55-s + 64-s − 65-s − 67-s − 68-s + 71-s − 76-s + 80-s − 85-s + 92-s − 95-s − 103-s + ⋯
L(s)  = 1  + 4-s + 5-s − 2·11-s − 13-s + 16-s − 17-s − 19-s + 20-s + 23-s + 29-s + 41-s − 43-s − 2·44-s + 49-s − 52-s − 2·55-s + 64-s − 65-s − 67-s − 68-s + 71-s − 76-s + 80-s − 85-s + 92-s − 95-s − 103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(459\)    =    \(3^{3} \cdot 17\)
Sign: $1$
Analytic conductor: \(0.229070\)
Root analytic conductor: \(0.478613\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{459} (458, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 459,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.074505684\)
\(L(\frac12)\) \(\approx\) \(1.074505684\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 + T \)
good2 \( ( 1 - T )( 1 + T ) \)
5 \( 1 - T + T^{2} \)
7 \( ( 1 - T )( 1 + T ) \)
11 \( ( 1 + T )^{2} \)
13 \( 1 + T + T^{2} \)
19 \( 1 + T + T^{2} \)
23 \( 1 - T + T^{2} \)
29 \( 1 - T + T^{2} \)
31 \( ( 1 - T )( 1 + T ) \)
37 \( ( 1 - T )( 1 + T ) \)
41 \( 1 - T + T^{2} \)
43 \( 1 + T + T^{2} \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( 1 + T + T^{2} \)
71 \( 1 - T + T^{2} \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( ( 1 - T )( 1 + T ) \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.98332821954406819926729736269, −10.49809225540244982376634530742, −9.743262152239776875460018324323, −8.496183220853762622292772169540, −7.51061952797034652984045972716, −6.64264709677162462110086688267, −5.67142322826064861440926168592, −4.78240329404948759354773029217, −2.74916842416376406048180467989, −2.19015086381984588647439184289, 2.19015086381984588647439184289, 2.74916842416376406048180467989, 4.78240329404948759354773029217, 5.67142322826064861440926168592, 6.64264709677162462110086688267, 7.51061952797034652984045972716, 8.496183220853762622292772169540, 9.743262152239776875460018324323, 10.49809225540244982376634530742, 10.98332821954406819926729736269

Graph of the $Z$-function along the critical line