L(s) = 1 | + (−0.265 + 1.38i)2-s + 0.0612i·3-s + (−1.85 − 0.737i)4-s − i·5-s + (−0.0850 − 0.0162i)6-s − 0.810·7-s + (1.51 − 2.38i)8-s + 2.99·9-s + (1.38 + 0.265i)10-s − 2.10·11-s + (0.0451 − 0.113i)12-s + 2.93·13-s + (0.215 − 1.12i)14-s + 0.0612·15-s + (2.91 + 2.74i)16-s − 4.65i·17-s + ⋯ |
L(s) = 1 | + (−0.187 + 0.982i)2-s + 0.0353i·3-s + (−0.929 − 0.368i)4-s − 0.447i·5-s + (−0.0347 − 0.00663i)6-s − 0.306·7-s + (0.536 − 0.843i)8-s + 0.998·9-s + (0.439 + 0.0838i)10-s − 0.633·11-s + (0.0130 − 0.0328i)12-s + 0.814·13-s + (0.0574 − 0.301i)14-s + 0.0158·15-s + (0.728 + 0.685i)16-s − 1.12i·17-s + ⋯ |
Λ(s)=(=(460s/2ΓC(s)L(s)(0.812−0.583i)Λ(2−s)
Λ(s)=(=(460s/2ΓC(s+1/2)L(s)(0.812−0.583i)Λ(1−s)
Degree: |
2 |
Conductor: |
460
= 22⋅5⋅23
|
Sign: |
0.812−0.583i
|
Analytic conductor: |
3.67311 |
Root analytic conductor: |
1.91653 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ460(91,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 460, ( :1/2), 0.812−0.583i)
|
Particular Values
L(1) |
≈ |
1.17049+0.376503i |
L(21) |
≈ |
1.17049+0.376503i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.265−1.38i)T |
| 5 | 1+iT |
| 23 | 1+(−4.03−2.59i)T |
good | 3 | 1−0.0612iT−3T2 |
| 7 | 1+0.810T+7T2 |
| 11 | 1+2.10T+11T2 |
| 13 | 1−2.93T+13T2 |
| 17 | 1+4.65iT−17T2 |
| 19 | 1−6.20T+19T2 |
| 29 | 1−5.24T+29T2 |
| 31 | 1−2.58iT−31T2 |
| 37 | 1+2.99iT−37T2 |
| 41 | 1−8.21T+41T2 |
| 43 | 1+10.1T+43T2 |
| 47 | 1−1.89iT−47T2 |
| 53 | 1+8.12iT−53T2 |
| 59 | 1+13.1iT−59T2 |
| 61 | 1−13.7iT−61T2 |
| 67 | 1−1.42T+67T2 |
| 71 | 1+2.26iT−71T2 |
| 73 | 1+4.13T+73T2 |
| 79 | 1−14.9T+79T2 |
| 83 | 1+8.73T+83T2 |
| 89 | 1−5.82iT−89T2 |
| 97 | 1−2.73iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.97852896851565101860747736778, −9.847098420096284552363843443167, −9.390527236099553915592277144742, −8.309580702622867806992367748345, −7.42005637937314267802603369159, −6.67691828985568157442388606891, −5.41492611648461168581341565613, −4.72881257974535400125454354572, −3.38091105349331994870739327899, −1.06726062452361544607458848497,
1.30552971756283034367686624868, 2.83713156862426828571034575997, 3.82950017695992429698121672995, 4.96877993887305450983169809771, 6.30669604253359202587465318801, 7.49898395359290323512437948048, 8.365966652616469907780985868809, 9.455300364143450914034286261359, 10.24381445424555626802090763894, 10.80598195217232005446313561769