Properties

Label 460.2.e.b.91.11
Level $460$
Weight $2$
Character 460.91
Analytic conductor $3.673$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [460,2,Mod(91,460)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(460, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("460.91");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 460.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67311849298\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.11
Character \(\chi\) \(=\) 460.91
Dual form 460.2.e.b.91.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.265302 + 1.38911i) q^{2} +0.0612154i q^{3} +(-1.85923 - 0.737066i) q^{4} -1.00000i q^{5} +(-0.0850346 - 0.0162406i) q^{6} -0.810885 q^{7} +(1.51712 - 2.38712i) q^{8} +2.99625 q^{9} +(1.38911 + 0.265302i) q^{10} -2.10140 q^{11} +(0.0451198 - 0.113813i) q^{12} +2.93504 q^{13} +(0.215130 - 1.12641i) q^{14} +0.0612154 q^{15} +(2.91347 + 2.74075i) q^{16} -4.65004i q^{17} +(-0.794913 + 4.16211i) q^{18} +6.20768 q^{19} +(-0.737066 + 1.85923i) q^{20} -0.0496387i q^{21} +(0.557507 - 2.91907i) q^{22} +(4.03517 + 2.59180i) q^{23} +(0.146129 + 0.0928711i) q^{24} -1.00000 q^{25} +(-0.778674 + 4.07709i) q^{26} +0.367063i q^{27} +(1.50762 + 0.597676i) q^{28} +5.24402 q^{29} +(-0.0162406 + 0.0850346i) q^{30} +2.58292i q^{31} +(-4.58014 + 3.31999i) q^{32} -0.128638i q^{33} +(6.45940 + 1.23367i) q^{34} +0.810885i q^{35} +(-5.57072 - 2.20844i) q^{36} -2.99380i q^{37} +(-1.64691 + 8.62312i) q^{38} +0.179670i q^{39} +(-2.38712 - 1.51712i) q^{40} +8.21934 q^{41} +(0.0689533 + 0.0131693i) q^{42} -10.1620 q^{43} +(3.90699 + 1.54887i) q^{44} -2.99625i q^{45} +(-4.67082 + 4.91766i) q^{46} +1.89447i q^{47} +(-0.167776 + 0.178349i) q^{48} -6.34247 q^{49} +(0.265302 - 1.38911i) q^{50} +0.284654 q^{51} +(-5.45692 - 2.16332i) q^{52} -8.12090i q^{53} +(-0.509889 - 0.0973827i) q^{54} +2.10140i q^{55} +(-1.23021 + 1.93568i) q^{56} +0.380006i q^{57} +(-1.39125 + 7.28450i) q^{58} -13.1005i q^{59} +(-0.113813 - 0.0451198i) q^{60} +13.7022i q^{61} +(-3.58795 - 0.685255i) q^{62} -2.42962 q^{63} +(-3.39669 - 7.24310i) q^{64} -2.93504i q^{65} +(0.178692 + 0.0341280i) q^{66} +1.42460 q^{67} +(-3.42739 + 8.64549i) q^{68} +(-0.158658 + 0.247014i) q^{69} +(-1.12641 - 0.215130i) q^{70} -2.26145i q^{71} +(4.54568 - 7.15242i) q^{72} -4.13040 q^{73} +(4.15870 + 0.794262i) q^{74} -0.0612154i q^{75} +(-11.5415 - 4.57547i) q^{76} +1.70400 q^{77} +(-0.249580 - 0.0476668i) q^{78} +14.9553 q^{79} +(2.74075 - 2.91347i) q^{80} +8.96629 q^{81} +(-2.18061 + 11.4175i) q^{82} -8.73564 q^{83} +(-0.0365870 + 0.0922896i) q^{84} -4.65004 q^{85} +(2.69601 - 14.1162i) q^{86} +0.321015i q^{87} +(-3.18808 + 5.01630i) q^{88} +5.82961i q^{89} +(4.16211 + 0.794913i) q^{90} -2.37998 q^{91} +(-5.59198 - 7.79293i) q^{92} -0.158114 q^{93} +(-2.63161 - 0.502606i) q^{94} -6.20768i q^{95} +(-0.203234 - 0.280375i) q^{96} +2.73446i q^{97} +(1.68267 - 8.81035i) q^{98} -6.29633 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{2} - 4 q^{4} - 16 q^{6} - 2 q^{8} - 52 q^{9} + 24 q^{12} - 4 q^{13} + 20 q^{16} - 56 q^{18} - 6 q^{24} - 32 q^{25} + 68 q^{26} + 8 q^{29} - 16 q^{32} + 8 q^{36} + 44 q^{41} - 4 q^{46} - 4 q^{48}+ \cdots + 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/460\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(277\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.265302 + 1.38911i −0.187597 + 0.982246i
\(3\) 0.0612154i 0.0353427i 0.999844 + 0.0176714i \(0.00562526\pi\)
−0.999844 + 0.0176714i \(0.994375\pi\)
\(4\) −1.85923 0.737066i −0.929615 0.368533i
\(5\) 1.00000i 0.447214i
\(6\) −0.0850346 0.0162406i −0.0347152 0.00663019i
\(7\) −0.810885 −0.306486 −0.153243 0.988189i \(-0.548972\pi\)
−0.153243 + 0.988189i \(0.548972\pi\)
\(8\) 1.51712 2.38712i 0.536383 0.843975i
\(9\) 2.99625 0.998751
\(10\) 1.38911 + 0.265302i 0.439274 + 0.0838960i
\(11\) −2.10140 −0.633596 −0.316798 0.948493i \(-0.602608\pi\)
−0.316798 + 0.948493i \(0.602608\pi\)
\(12\) 0.0451198 0.113813i 0.0130250 0.0328551i
\(13\) 2.93504 0.814035 0.407017 0.913420i \(-0.366569\pi\)
0.407017 + 0.913420i \(0.366569\pi\)
\(14\) 0.215130 1.12641i 0.0574959 0.301044i
\(15\) 0.0612154 0.0158057
\(16\) 2.91347 + 2.74075i 0.728367 + 0.685187i
\(17\) 4.65004i 1.12780i −0.825843 0.563900i \(-0.809300\pi\)
0.825843 0.563900i \(-0.190700\pi\)
\(18\) −0.794913 + 4.16211i −0.187363 + 0.981019i
\(19\) 6.20768 1.42414 0.712070 0.702109i \(-0.247758\pi\)
0.712070 + 0.702109i \(0.247758\pi\)
\(20\) −0.737066 + 1.85923i −0.164813 + 0.415736i
\(21\) 0.0496387i 0.0108320i
\(22\) 0.557507 2.91907i 0.118861 0.622348i
\(23\) 4.03517 + 2.59180i 0.841391 + 0.540427i
\(24\) 0.146129 + 0.0928711i 0.0298284 + 0.0189572i
\(25\) −1.00000 −0.200000
\(26\) −0.778674 + 4.07709i −0.152711 + 0.799582i
\(27\) 0.367063i 0.0706413i
\(28\) 1.50762 + 0.597676i 0.284914 + 0.112950i
\(29\) 5.24402 0.973790 0.486895 0.873461i \(-0.338129\pi\)
0.486895 + 0.873461i \(0.338129\pi\)
\(30\) −0.0162406 + 0.0850346i −0.00296511 + 0.0155251i
\(31\) 2.58292i 0.463906i 0.972727 + 0.231953i \(0.0745116\pi\)
−0.972727 + 0.231953i \(0.925488\pi\)
\(32\) −4.58014 + 3.31999i −0.809662 + 0.586896i
\(33\) 0.128638i 0.0223930i
\(34\) 6.45940 + 1.23367i 1.10778 + 0.211572i
\(35\) 0.810885i 0.137065i
\(36\) −5.57072 2.20844i −0.928453 0.368073i
\(37\) 2.99380i 0.492178i −0.969247 0.246089i \(-0.920855\pi\)
0.969247 0.246089i \(-0.0791455\pi\)
\(38\) −1.64691 + 8.62312i −0.267164 + 1.39886i
\(39\) 0.179670i 0.0287702i
\(40\) −2.38712 1.51712i −0.377437 0.239878i
\(41\) 8.21934 1.28365 0.641823 0.766853i \(-0.278178\pi\)
0.641823 + 0.766853i \(0.278178\pi\)
\(42\) 0.0689533 + 0.0131693i 0.0106397 + 0.00203206i
\(43\) −10.1620 −1.54970 −0.774849 0.632147i \(-0.782174\pi\)
−0.774849 + 0.632147i \(0.782174\pi\)
\(44\) 3.90699 + 1.54887i 0.589001 + 0.233501i
\(45\) 2.99625i 0.446655i
\(46\) −4.67082 + 4.91766i −0.688675 + 0.725070i
\(47\) 1.89447i 0.276336i 0.990409 + 0.138168i \(0.0441214\pi\)
−0.990409 + 0.138168i \(0.955879\pi\)
\(48\) −0.167776 + 0.178349i −0.0242164 + 0.0257425i
\(49\) −6.34247 −0.906066
\(50\) 0.265302 1.38911i 0.0375194 0.196449i
\(51\) 0.284654 0.0398595
\(52\) −5.45692 2.16332i −0.756738 0.299999i
\(53\) 8.12090i 1.11549i −0.830012 0.557745i \(-0.811667\pi\)
0.830012 0.557745i \(-0.188333\pi\)
\(54\) −0.509889 0.0973827i −0.0693871 0.0132521i
\(55\) 2.10140i 0.283353i
\(56\) −1.23021 + 1.93568i −0.164394 + 0.258666i
\(57\) 0.380006i 0.0503330i
\(58\) −1.39125 + 7.28450i −0.182680 + 0.956501i
\(59\) 13.1005i 1.70554i −0.522284 0.852772i \(-0.674920\pi\)
0.522284 0.852772i \(-0.325080\pi\)
\(60\) −0.113813 0.0451198i −0.0146933 0.00582494i
\(61\) 13.7022i 1.75439i 0.480133 + 0.877196i \(0.340588\pi\)
−0.480133 + 0.877196i \(0.659412\pi\)
\(62\) −3.58795 0.685255i −0.455670 0.0870275i
\(63\) −2.42962 −0.306103
\(64\) −3.39669 7.24310i −0.424586 0.905387i
\(65\) 2.93504i 0.364047i
\(66\) 0.178692 + 0.0341280i 0.0219955 + 0.00420087i
\(67\) 1.42460 0.174042 0.0870211 0.996206i \(-0.472265\pi\)
0.0870211 + 0.996206i \(0.472265\pi\)
\(68\) −3.42739 + 8.64549i −0.415632 + 1.04842i
\(69\) −0.158658 + 0.247014i −0.0191002 + 0.0297370i
\(70\) −1.12641 0.215130i −0.134631 0.0257129i
\(71\) 2.26145i 0.268384i −0.990955 0.134192i \(-0.957156\pi\)
0.990955 0.134192i \(-0.0428439\pi\)
\(72\) 4.54568 7.15242i 0.535713 0.842920i
\(73\) −4.13040 −0.483426 −0.241713 0.970348i \(-0.577709\pi\)
−0.241713 + 0.970348i \(0.577709\pi\)
\(74\) 4.15870 + 0.794262i 0.483440 + 0.0923311i
\(75\) 0.0612154i 0.00706854i
\(76\) −11.5415 4.57547i −1.32390 0.524842i
\(77\) 1.70400 0.194188
\(78\) −0.249580 0.0476668i −0.0282594 0.00539720i
\(79\) 14.9553 1.68261 0.841304 0.540562i \(-0.181788\pi\)
0.841304 + 0.540562i \(0.181788\pi\)
\(80\) 2.74075 2.91347i 0.306425 0.325736i
\(81\) 8.96629 0.996254
\(82\) −2.18061 + 11.4175i −0.240808 + 1.26086i
\(83\) −8.73564 −0.958861 −0.479431 0.877580i \(-0.659157\pi\)
−0.479431 + 0.877580i \(0.659157\pi\)
\(84\) −0.0365870 + 0.0922896i −0.00399197 + 0.0100696i
\(85\) −4.65004 −0.504368
\(86\) 2.69601 14.1162i 0.290719 1.52218i
\(87\) 0.321015i 0.0344164i
\(88\) −3.18808 + 5.01630i −0.339850 + 0.534739i
\(89\) 5.82961i 0.617938i 0.951072 + 0.308969i \(0.0999839\pi\)
−0.951072 + 0.308969i \(0.900016\pi\)
\(90\) 4.16211 + 0.794913i 0.438725 + 0.0837912i
\(91\) −2.37998 −0.249490
\(92\) −5.59198 7.79293i −0.583004 0.812469i
\(93\) −0.158114 −0.0163957
\(94\) −2.63161 0.502606i −0.271430 0.0518399i
\(95\) 6.20768i 0.636895i
\(96\) −0.203234 0.280375i −0.0207425 0.0286157i
\(97\) 2.73446i 0.277643i 0.990317 + 0.138821i \(0.0443314\pi\)
−0.990317 + 0.138821i \(0.955669\pi\)
\(98\) 1.68267 8.81035i 0.169975 0.889980i
\(99\) −6.29633 −0.632805
\(100\) 1.85923 + 0.737066i 0.185923 + 0.0737066i
\(101\) −1.66981 −0.166152 −0.0830761 0.996543i \(-0.526474\pi\)
−0.0830761 + 0.996543i \(0.526474\pi\)
\(102\) −0.0755194 + 0.395414i −0.00747753 + 0.0391519i
\(103\) 3.01723 0.297297 0.148648 0.988890i \(-0.452508\pi\)
0.148648 + 0.988890i \(0.452508\pi\)
\(104\) 4.45281 7.00630i 0.436634 0.687024i
\(105\) −0.0496387 −0.00484424
\(106\) 11.2808 + 2.15449i 1.09569 + 0.209263i
\(107\) −12.4870 −1.20716 −0.603580 0.797302i \(-0.706260\pi\)
−0.603580 + 0.797302i \(0.706260\pi\)
\(108\) 0.270550 0.682454i 0.0260336 0.0656692i
\(109\) 11.3533i 1.08745i −0.839263 0.543726i \(-0.817013\pi\)
0.839263 0.543726i \(-0.182987\pi\)
\(110\) −2.91907 0.557507i −0.278322 0.0531562i
\(111\) 0.183267 0.0173949
\(112\) −2.36249 2.22243i −0.223234 0.210000i
\(113\) 2.38506i 0.224367i −0.993687 0.112184i \(-0.964216\pi\)
0.993687 0.112184i \(-0.0357845\pi\)
\(114\) −0.527868 0.100816i −0.0494394 0.00944232i
\(115\) 2.59180 4.03517i 0.241686 0.376281i
\(116\) −9.74983 3.86519i −0.905249 0.358874i
\(117\) 8.79413 0.813018
\(118\) 18.1980 + 3.47560i 1.67526 + 0.319955i
\(119\) 3.77065i 0.345655i
\(120\) 0.0928711 0.146129i 0.00847793 0.0133396i
\(121\) −6.58411 −0.598556
\(122\) −19.0338 3.63523i −1.72324 0.329119i
\(123\) 0.503150i 0.0453675i
\(124\) 1.90378 4.80224i 0.170965 0.431254i
\(125\) 1.00000i 0.0894427i
\(126\) 0.644583 3.37500i 0.0574240 0.300668i
\(127\) 6.12439i 0.543452i −0.962375 0.271726i \(-0.912406\pi\)
0.962375 0.271726i \(-0.0875945\pi\)
\(128\) 10.9626 2.79675i 0.968964 0.247200i
\(129\) 0.622073i 0.0547705i
\(130\) 4.07709 + 0.778674i 0.357584 + 0.0682942i
\(131\) 15.4796i 1.35245i −0.736693 0.676227i \(-0.763614\pi\)
0.736693 0.676227i \(-0.236386\pi\)
\(132\) −0.0948148 + 0.239168i −0.00825257 + 0.0208169i
\(133\) −5.03372 −0.436479
\(134\) −0.377949 + 1.97892i −0.0326498 + 0.170952i
\(135\) 0.367063 0.0315917
\(136\) −11.1002 7.05467i −0.951835 0.604933i
\(137\) 17.6295i 1.50619i 0.657914 + 0.753093i \(0.271439\pi\)
−0.657914 + 0.753093i \(0.728561\pi\)
\(138\) −0.301037 0.285926i −0.0256259 0.0243396i
\(139\) 2.39357i 0.203020i −0.994835 0.101510i \(-0.967633\pi\)
0.994835 0.101510i \(-0.0323674\pi\)
\(140\) 0.597676 1.50762i 0.0505128 0.127417i
\(141\) −0.115970 −0.00976647
\(142\) 3.14139 + 0.599967i 0.263619 + 0.0503481i
\(143\) −6.16770 −0.515769
\(144\) 8.72948 + 8.21198i 0.727457 + 0.684332i
\(145\) 5.24402i 0.435492i
\(146\) 1.09580 5.73756i 0.0906894 0.474843i
\(147\) 0.388256i 0.0320228i
\(148\) −2.20663 + 5.56616i −0.181384 + 0.457536i
\(149\) 0.398304i 0.0326303i −0.999867 0.0163152i \(-0.994806\pi\)
0.999867 0.0163152i \(-0.00519351\pi\)
\(150\) 0.0850346 + 0.0162406i 0.00694305 + 0.00132604i
\(151\) 18.3711i 1.49502i 0.664249 + 0.747511i \(0.268751\pi\)
−0.664249 + 0.747511i \(0.731249\pi\)
\(152\) 9.41780 14.8185i 0.763884 1.20194i
\(153\) 13.9327i 1.12639i
\(154\) −0.452074 + 2.36703i −0.0364292 + 0.190741i
\(155\) 2.58292 0.207465
\(156\) 0.132429 0.334047i 0.0106028 0.0267452i
\(157\) 18.5760i 1.48252i 0.671216 + 0.741261i \(0.265772\pi\)
−0.671216 + 0.741261i \(0.734228\pi\)
\(158\) −3.96769 + 20.7746i −0.315652 + 1.65274i
\(159\) 0.497124 0.0394245
\(160\) 3.31999 + 4.58014i 0.262468 + 0.362092i
\(161\) −3.27206 2.10165i −0.257874 0.165633i
\(162\) −2.37878 + 12.4551i −0.186894 + 0.978567i
\(163\) 13.2878i 1.04078i 0.853928 + 0.520392i \(0.174214\pi\)
−0.853928 + 0.520392i \(0.825786\pi\)
\(164\) −15.2816 6.05820i −1.19330 0.473066i
\(165\) −0.128638 −0.0100145
\(166\) 2.31759 12.1347i 0.179880 0.941838i
\(167\) 4.05918i 0.314109i −0.987590 0.157054i \(-0.949800\pi\)
0.987590 0.157054i \(-0.0501998\pi\)
\(168\) −0.118493 0.0753078i −0.00914197 0.00581012i
\(169\) −4.38552 −0.337348
\(170\) 1.23367 6.45940i 0.0946179 0.495413i
\(171\) 18.5998 1.42236
\(172\) 18.8936 + 7.49010i 1.44062 + 0.571115i
\(173\) −18.4562 −1.40320 −0.701600 0.712571i \(-0.747531\pi\)
−0.701600 + 0.712571i \(0.747531\pi\)
\(174\) −0.445923 0.0851659i −0.0338053 0.00645641i
\(175\) 0.810885 0.0612972
\(176\) −6.12236 5.75942i −0.461491 0.434132i
\(177\) 0.801954 0.0602785
\(178\) −8.09795 1.54661i −0.606967 0.115923i
\(179\) 8.67585i 0.648464i −0.945978 0.324232i \(-0.894894\pi\)
0.945978 0.324232i \(-0.105106\pi\)
\(180\) −2.20844 + 5.57072i −0.164607 + 0.415217i
\(181\) 21.9722i 1.63318i 0.577218 + 0.816590i \(0.304138\pi\)
−0.577218 + 0.816590i \(0.695862\pi\)
\(182\) 0.631415 3.30605i 0.0468036 0.245061i
\(183\) −0.838787 −0.0620049
\(184\) 12.3088 5.70036i 0.907415 0.420236i
\(185\) −2.99380 −0.220109
\(186\) 0.0419481 0.219638i 0.00307579 0.0161046i
\(187\) 9.77160i 0.714570i
\(188\) 1.39635 3.52225i 0.101839 0.256886i
\(189\) 0.297646i 0.0216506i
\(190\) 8.62312 + 1.64691i 0.625587 + 0.119480i
\(191\) −12.6841 −0.917792 −0.458896 0.888490i \(-0.651755\pi\)
−0.458896 + 0.888490i \(0.651755\pi\)
\(192\) 0.443389 0.207930i 0.0319989 0.0150060i
\(193\) −15.3963 −1.10825 −0.554126 0.832433i \(-0.686947\pi\)
−0.554126 + 0.832433i \(0.686947\pi\)
\(194\) −3.79846 0.725460i −0.272713 0.0520850i
\(195\) 0.179670 0.0128664
\(196\) 11.7921 + 4.67482i 0.842293 + 0.333915i
\(197\) −9.62990 −0.686102 −0.343051 0.939317i \(-0.611460\pi\)
−0.343051 + 0.939317i \(0.611460\pi\)
\(198\) 1.67043 8.74627i 0.118712 0.621570i
\(199\) 2.04990 0.145313 0.0726567 0.997357i \(-0.476852\pi\)
0.0726567 + 0.997357i \(0.476852\pi\)
\(200\) −1.51712 + 2.38712i −0.107277 + 0.168795i
\(201\) 0.0872072i 0.00615112i
\(202\) 0.443004 2.31954i 0.0311697 0.163202i
\(203\) −4.25230 −0.298453
\(204\) −0.529237 0.209809i −0.0370540 0.0146896i
\(205\) 8.21934i 0.574064i
\(206\) −0.800479 + 4.19125i −0.0557720 + 0.292019i
\(207\) 12.0904 + 7.76568i 0.840340 + 0.539752i
\(208\) 8.55115 + 8.04422i 0.592916 + 0.557766i
\(209\) −13.0448 −0.902330
\(210\) 0.0131693 0.0689533i 0.000908765 0.00475823i
\(211\) 4.14576i 0.285406i −0.989766 0.142703i \(-0.954421\pi\)
0.989766 0.142703i \(-0.0455793\pi\)
\(212\) −5.98564 + 15.0986i −0.411095 + 1.03698i
\(213\) 0.138435 0.00948543
\(214\) 3.31282 17.3457i 0.226460 1.18573i
\(215\) 10.1620i 0.693046i
\(216\) 0.876223 + 0.556879i 0.0596195 + 0.0378908i
\(217\) 2.09445i 0.142181i
\(218\) 15.7710 + 3.01207i 1.06815 + 0.204003i
\(219\) 0.252844i 0.0170856i
\(220\) 1.54887 3.90699i 0.104425 0.263409i
\(221\) 13.6481i 0.918068i
\(222\) −0.0486211 + 0.254577i −0.00326323 + 0.0170861i
\(223\) 15.8065i 1.05848i 0.848472 + 0.529240i \(0.177523\pi\)
−0.848472 + 0.529240i \(0.822477\pi\)
\(224\) 3.71397 2.69213i 0.248150 0.179875i
\(225\) −2.99625 −0.199750
\(226\) 3.31310 + 0.632761i 0.220384 + 0.0420907i
\(227\) 10.1465 0.673449 0.336725 0.941603i \(-0.390681\pi\)
0.336725 + 0.941603i \(0.390681\pi\)
\(228\) 0.280089 0.706517i 0.0185494 0.0467903i
\(229\) 12.6776i 0.837757i 0.908042 + 0.418878i \(0.137577\pi\)
−0.908042 + 0.418878i \(0.862423\pi\)
\(230\) 4.91766 + 4.67082i 0.324261 + 0.307985i
\(231\) 0.104311i 0.00686314i
\(232\) 7.95581 12.5181i 0.522324 0.821854i
\(233\) 13.5503 0.887710 0.443855 0.896099i \(-0.353611\pi\)
0.443855 + 0.896099i \(0.353611\pi\)
\(234\) −2.33310 + 12.2160i −0.152520 + 0.798583i
\(235\) 1.89447 0.123581
\(236\) −9.65595 + 24.3569i −0.628549 + 1.58550i
\(237\) 0.915497i 0.0594679i
\(238\) −5.23783 1.00036i −0.339518 0.0648438i
\(239\) 10.8030i 0.698785i 0.936976 + 0.349392i \(0.113612\pi\)
−0.936976 + 0.349392i \(0.886388\pi\)
\(240\) 0.178349 + 0.167776i 0.0115124 + 0.0108299i
\(241\) 23.5923i 1.51971i 0.650090 + 0.759857i \(0.274731\pi\)
−0.650090 + 0.759857i \(0.725269\pi\)
\(242\) 1.74678 9.14603i 0.112287 0.587929i
\(243\) 1.65006i 0.105852i
\(244\) 10.0995 25.4756i 0.646551 1.63091i
\(245\) 6.34247i 0.405205i
\(246\) −0.698929 0.133487i −0.0445621 0.00851082i
\(247\) 18.2198 1.15930
\(248\) 6.16574 + 3.91860i 0.391525 + 0.248831i
\(249\) 0.534756i 0.0338888i
\(250\) −1.38911 0.265302i −0.0878548 0.0167792i
\(251\) −3.93647 −0.248468 −0.124234 0.992253i \(-0.539647\pi\)
−0.124234 + 0.992253i \(0.539647\pi\)
\(252\) 4.51722 + 1.79079i 0.284558 + 0.112809i
\(253\) −8.47951 5.44641i −0.533102 0.342413i
\(254\) 8.50743 + 1.62482i 0.533804 + 0.101950i
\(255\) 0.284654i 0.0178257i
\(256\) 0.976582 + 15.9702i 0.0610364 + 0.998136i
\(257\) 9.47781 0.591209 0.295605 0.955310i \(-0.404479\pi\)
0.295605 + 0.955310i \(0.404479\pi\)
\(258\) 0.864126 + 0.165038i 0.0537981 + 0.0102748i
\(259\) 2.42763i 0.150845i
\(260\) −2.16332 + 5.45692i −0.134163 + 0.338424i
\(261\) 15.7124 0.972573
\(262\) 21.5027 + 4.10676i 1.32844 + 0.253717i
\(263\) 24.4123 1.50532 0.752662 0.658407i \(-0.228769\pi\)
0.752662 + 0.658407i \(0.228769\pi\)
\(264\) −0.307075 0.195160i −0.0188991 0.0120112i
\(265\) −8.12090 −0.498863
\(266\) 1.33546 6.99236i 0.0818821 0.428729i
\(267\) −0.356862 −0.0218396
\(268\) −2.64865 1.05002i −0.161792 0.0641403i
\(269\) −2.11000 −0.128649 −0.0643245 0.997929i \(-0.520489\pi\)
−0.0643245 + 0.997929i \(0.520489\pi\)
\(270\) −0.0973827 + 0.509889i −0.00592652 + 0.0310309i
\(271\) 25.7964i 1.56702i 0.621379 + 0.783510i \(0.286573\pi\)
−0.621379 + 0.783510i \(0.713427\pi\)
\(272\) 12.7446 13.5477i 0.772755 0.821452i
\(273\) 0.145692i 0.00881766i
\(274\) −24.4892 4.67714i −1.47944 0.282556i
\(275\) 2.10140 0.126719
\(276\) 0.477047 0.342315i 0.0287149 0.0206049i
\(277\) −6.05641 −0.363894 −0.181947 0.983308i \(-0.558240\pi\)
−0.181947 + 0.983308i \(0.558240\pi\)
\(278\) 3.32492 + 0.635020i 0.199416 + 0.0380860i
\(279\) 7.73908i 0.463327i
\(280\) 1.93568 + 1.23021i 0.115679 + 0.0735192i
\(281\) 27.0312i 1.61255i 0.591543 + 0.806274i \(0.298519\pi\)
−0.591543 + 0.806274i \(0.701481\pi\)
\(282\) 0.0307672 0.161095i 0.00183216 0.00959308i
\(283\) −21.0525 −1.25144 −0.625720 0.780048i \(-0.715195\pi\)
−0.625720 + 0.780048i \(0.715195\pi\)
\(284\) −1.66684 + 4.20455i −0.0989085 + 0.249494i
\(285\) 0.380006 0.0225096
\(286\) 1.63631 8.56759i 0.0967568 0.506612i
\(287\) −6.66494 −0.393419
\(288\) −13.7233 + 9.94752i −0.808651 + 0.586163i
\(289\) −4.62287 −0.271934
\(290\) 7.28450 + 1.39125i 0.427760 + 0.0816970i
\(291\) −0.167391 −0.00981265
\(292\) 7.67935 + 3.04437i 0.449400 + 0.178159i
\(293\) 19.4086i 1.13386i −0.823766 0.566931i \(-0.808131\pi\)
0.823766 0.566931i \(-0.191869\pi\)
\(294\) 0.539329 + 0.103005i 0.0314543 + 0.00600739i
\(295\) −13.1005 −0.762742
\(296\) −7.14656 4.54196i −0.415385 0.263996i
\(297\) 0.771347i 0.0447581i
\(298\) 0.553286 + 0.105671i 0.0320510 + 0.00612136i
\(299\) 11.8434 + 7.60704i 0.684921 + 0.439926i
\(300\) −0.0451198 + 0.113813i −0.00260499 + 0.00657102i
\(301\) 8.24025 0.474960
\(302\) −25.5195 4.87391i −1.46848 0.280462i
\(303\) 0.102218i 0.00587227i
\(304\) 18.0859 + 17.0137i 1.03730 + 0.975803i
\(305\) 13.7022 0.784588
\(306\) 19.3540 + 3.69638i 1.10639 + 0.211308i
\(307\) 24.0934i 1.37508i −0.726144 0.687542i \(-0.758690\pi\)
0.726144 0.687542i \(-0.241310\pi\)
\(308\) −3.16812 1.25596i −0.180520 0.0715648i
\(309\) 0.184701i 0.0105073i
\(310\) −0.685255 + 3.58795i −0.0389199 + 0.203782i
\(311\) 15.5862i 0.883811i −0.897062 0.441906i \(-0.854303\pi\)
0.897062 0.441906i \(-0.145697\pi\)
\(312\) 0.428893 + 0.272581i 0.0242813 + 0.0154318i
\(313\) 26.8531i 1.51783i −0.651191 0.758914i \(-0.725730\pi\)
0.651191 0.758914i \(-0.274270\pi\)
\(314\) −25.8040 4.92825i −1.45620 0.278117i
\(315\) 2.42962i 0.136893i
\(316\) −27.8054 11.0231i −1.56418 0.620097i
\(317\) 9.87979 0.554905 0.277452 0.960739i \(-0.410510\pi\)
0.277452 + 0.960739i \(0.410510\pi\)
\(318\) −0.131888 + 0.690557i −0.00739592 + 0.0387245i
\(319\) −11.0198 −0.616990
\(320\) −7.24310 + 3.39669i −0.404902 + 0.189881i
\(321\) 0.764394i 0.0426643i
\(322\) 3.78750 3.98766i 0.211069 0.222224i
\(323\) 28.8660i 1.60615i
\(324\) −16.6704 6.60875i −0.926133 0.367153i
\(325\) −2.93504 −0.162807
\(326\) −18.4582 3.52530i −1.02231 0.195248i
\(327\) 0.694999 0.0384335
\(328\) 12.4697 19.6206i 0.688526 1.08336i
\(329\) 1.53619i 0.0846931i
\(330\) 0.0341280 0.178692i 0.00187868 0.00983667i
\(331\) 16.4661i 0.905061i −0.891749 0.452531i \(-0.850521\pi\)
0.891749 0.452531i \(-0.149479\pi\)
\(332\) 16.2416 + 6.43875i 0.891371 + 0.353372i
\(333\) 8.97018i 0.491563i
\(334\) 5.63863 + 1.07691i 0.308532 + 0.0589259i
\(335\) 1.42460i 0.0778340i
\(336\) 0.136047 0.144621i 0.00742198 0.00788970i
\(337\) 6.50726i 0.354473i −0.984168 0.177237i \(-0.943284\pi\)
0.984168 0.177237i \(-0.0567158\pi\)
\(338\) 1.16349 6.09195i 0.0632855 0.331359i
\(339\) 0.146002 0.00792975
\(340\) 8.64549 + 3.42739i 0.468868 + 0.185876i
\(341\) 5.42775i 0.293929i
\(342\) −4.93457 + 25.8371i −0.266831 + 1.39711i
\(343\) 10.8192 0.584182
\(344\) −15.4170 + 24.2580i −0.831231 + 1.30791i
\(345\) 0.247014 + 0.158658i 0.0132988 + 0.00854185i
\(346\) 4.89648 25.6376i 0.263236 1.37829i
\(347\) 3.84426i 0.206371i −0.994662 0.103185i \(-0.967097\pi\)
0.994662 0.103185i \(-0.0329035\pi\)
\(348\) 0.236609 0.596840i 0.0126836 0.0319940i
\(349\) 7.73983 0.414304 0.207152 0.978309i \(-0.433581\pi\)
0.207152 + 0.978309i \(0.433581\pi\)
\(350\) −0.215130 + 1.12641i −0.0114992 + 0.0602089i
\(351\) 1.07735i 0.0575044i
\(352\) 9.62472 6.97663i 0.512999 0.371855i
\(353\) −21.2558 −1.13133 −0.565667 0.824634i \(-0.691381\pi\)
−0.565667 + 0.824634i \(0.691381\pi\)
\(354\) −0.212760 + 1.11400i −0.0113081 + 0.0592084i
\(355\) −2.26145 −0.120025
\(356\) 4.29681 10.8386i 0.227730 0.574444i
\(357\) −0.230822 −0.0122164
\(358\) 12.0517 + 2.30172i 0.636951 + 0.121650i
\(359\) −20.5153 −1.08275 −0.541377 0.840780i \(-0.682097\pi\)
−0.541377 + 0.840780i \(0.682097\pi\)
\(360\) −7.15242 4.54568i −0.376965 0.239578i
\(361\) 19.5353 1.02817
\(362\) −30.5217 5.82927i −1.60418 0.306380i
\(363\) 0.403049i 0.0211546i
\(364\) 4.42493 + 1.75420i 0.231930 + 0.0919453i
\(365\) 4.13040i 0.216195i
\(366\) 0.222532 1.16516i 0.0116319 0.0609041i
\(367\) 11.4965 0.600113 0.300057 0.953921i \(-0.402994\pi\)
0.300057 + 0.953921i \(0.402994\pi\)
\(368\) 4.65286 + 18.6105i 0.242547 + 0.970140i
\(369\) 24.6272 1.28204
\(370\) 0.794262 4.15870i 0.0412917 0.216201i
\(371\) 6.58511i 0.341882i
\(372\) 0.293971 + 0.116541i 0.0152417 + 0.00604236i
\(373\) 16.8099i 0.870386i 0.900337 + 0.435193i \(0.143320\pi\)
−0.900337 + 0.435193i \(0.856680\pi\)
\(374\) −13.5738 2.59243i −0.701884 0.134051i
\(375\) −0.0612154 −0.00316115
\(376\) 4.52232 + 2.87413i 0.233221 + 0.148222i
\(377\) 15.3914 0.792698
\(378\) 0.413462 + 0.0789662i 0.0212662 + 0.00406158i
\(379\) 4.04643 0.207851 0.103926 0.994585i \(-0.466860\pi\)
0.103926 + 0.994585i \(0.466860\pi\)
\(380\) −4.57547 + 11.5415i −0.234717 + 0.592067i
\(381\) 0.374907 0.0192071
\(382\) 3.36513 17.6196i 0.172175 0.901498i
\(383\) −11.0961 −0.566986 −0.283493 0.958974i \(-0.591493\pi\)
−0.283493 + 0.958974i \(0.591493\pi\)
\(384\) 0.171204 + 0.671079i 0.00873672 + 0.0342458i
\(385\) 1.70400i 0.0868437i
\(386\) 4.08468 21.3871i 0.207905 1.08858i
\(387\) −30.4481 −1.54776
\(388\) 2.01548 5.08399i 0.102321 0.258101i
\(389\) 18.0429i 0.914809i −0.889259 0.457405i \(-0.848779\pi\)
0.889259 0.457405i \(-0.151221\pi\)
\(390\) −0.0476668 + 0.249580i −0.00241370 + 0.0126380i
\(391\) 12.0520 18.7637i 0.609494 0.948921i
\(392\) −9.62228 + 15.1402i −0.485999 + 0.764697i
\(393\) 0.947587 0.0477994
\(394\) 2.55483 13.3769i 0.128711 0.673921i
\(395\) 14.9553i 0.752485i
\(396\) 11.7063 + 4.64081i 0.588265 + 0.233210i
\(397\) −26.5667 −1.33334 −0.666672 0.745351i \(-0.732282\pi\)
−0.666672 + 0.745351i \(0.732282\pi\)
\(398\) −0.543843 + 2.84753i −0.0272604 + 0.142734i
\(399\) 0.308141i 0.0154263i
\(400\) −2.91347 2.74075i −0.145673 0.137037i
\(401\) 0.934463i 0.0466649i −0.999728 0.0233324i \(-0.992572\pi\)
0.999728 0.0233324i \(-0.00742762\pi\)
\(402\) −0.121140 0.0231363i −0.00604192 0.00115393i
\(403\) 7.58098i 0.377636i
\(404\) 3.10456 + 1.23076i 0.154458 + 0.0612326i
\(405\) 8.96629i 0.445538i
\(406\) 1.12814 5.90689i 0.0559889 0.293154i
\(407\) 6.29118i 0.311842i
\(408\) 0.431854 0.679503i 0.0213800 0.0336404i
\(409\) −15.7550 −0.779037 −0.389518 0.921019i \(-0.627359\pi\)
−0.389518 + 0.921019i \(0.627359\pi\)
\(410\) 11.4175 + 2.18061i 0.563872 + 0.107693i
\(411\) −1.07919 −0.0532327
\(412\) −5.60973 2.22390i −0.276371 0.109564i
\(413\) 10.6230i 0.522725i
\(414\) −13.9950 + 14.7346i −0.687815 + 0.724164i
\(415\) 8.73564i 0.428816i
\(416\) −13.4429 + 9.74430i −0.659093 + 0.477754i
\(417\) 0.146523 0.00717528
\(418\) 3.46082 18.1206i 0.169274 0.886310i
\(419\) −24.9291 −1.21787 −0.608933 0.793222i \(-0.708402\pi\)
−0.608933 + 0.793222i \(0.708402\pi\)
\(420\) 0.0922896 + 0.0365870i 0.00450327 + 0.00178526i
\(421\) 16.2869i 0.793775i −0.917867 0.396888i \(-0.870090\pi\)
0.917867 0.396888i \(-0.129910\pi\)
\(422\) 5.75889 + 1.09988i 0.280338 + 0.0535413i
\(423\) 5.67630i 0.275991i
\(424\) −19.3856 12.3204i −0.941446 0.598330i
\(425\) 4.65004i 0.225560i
\(426\) −0.0367272 + 0.192301i −0.00177944 + 0.00931703i
\(427\) 11.1109i 0.537696i
\(428\) 23.2161 + 9.20372i 1.12219 + 0.444879i
\(429\) 0.377558i 0.0182287i
\(430\) −14.1162 2.69601i −0.680741 0.130013i
\(431\) 24.5994 1.18491 0.592456 0.805603i \(-0.298158\pi\)
0.592456 + 0.805603i \(0.298158\pi\)
\(432\) −1.00603 + 1.06943i −0.0484025 + 0.0514528i
\(433\) 2.41636i 0.116123i 0.998313 + 0.0580615i \(0.0184920\pi\)
−0.998313 + 0.0580615i \(0.981508\pi\)
\(434\) 2.90942 + 0.555663i 0.139656 + 0.0266727i
\(435\) 0.321015 0.0153915
\(436\) −8.36816 + 21.1085i −0.400762 + 1.01091i
\(437\) 25.0490 + 16.0891i 1.19826 + 0.769644i
\(438\) 0.351227 + 0.0670800i 0.0167823 + 0.00320521i
\(439\) 20.2396i 0.965984i 0.875625 + 0.482992i \(0.160450\pi\)
−0.875625 + 0.482992i \(0.839550\pi\)
\(440\) 5.01630 + 3.18808i 0.239143 + 0.151986i
\(441\) −19.0036 −0.904935
\(442\) 18.9586 + 3.62087i 0.901769 + 0.172227i
\(443\) 16.4810i 0.783035i −0.920171 0.391517i \(-0.871950\pi\)
0.920171 0.391517i \(-0.128050\pi\)
\(444\) −0.340735 0.135080i −0.0161705 0.00641059i
\(445\) 5.82961 0.276350
\(446\) −21.9569 4.19350i −1.03969 0.198568i
\(447\) 0.0243823 0.00115324
\(448\) 2.75433 + 5.87332i 0.130130 + 0.277488i
\(449\) 28.5354 1.34667 0.673335 0.739337i \(-0.264861\pi\)
0.673335 + 0.739337i \(0.264861\pi\)
\(450\) 0.794913 4.16211i 0.0374726 0.196204i
\(451\) −17.2721 −0.813313
\(452\) −1.75794 + 4.43437i −0.0826868 + 0.208575i
\(453\) −1.12460 −0.0528382
\(454\) −2.69190 + 14.0946i −0.126337 + 0.661493i
\(455\) 2.37998i 0.111575i
\(456\) 0.907119 + 0.576514i 0.0424797 + 0.0269978i
\(457\) 4.16624i 0.194888i 0.995241 + 0.0974442i \(0.0310667\pi\)
−0.995241 + 0.0974442i \(0.968933\pi\)
\(458\) −17.6105 3.36339i −0.822883 0.157161i
\(459\) 1.70686 0.0796693
\(460\) −7.79293 + 5.59198i −0.363347 + 0.260727i
\(461\) −15.8725 −0.739255 −0.369628 0.929180i \(-0.620515\pi\)
−0.369628 + 0.929180i \(0.620515\pi\)
\(462\) −0.144899 0.0276739i −0.00674130 0.00128751i
\(463\) 39.4302i 1.83248i −0.400632 0.916239i \(-0.631209\pi\)
0.400632 0.916239i \(-0.368791\pi\)
\(464\) 15.2783 + 14.3725i 0.709276 + 0.667228i
\(465\) 0.158114i 0.00733238i
\(466\) −3.59493 + 18.8228i −0.166532 + 0.871949i
\(467\) −11.3406 −0.524780 −0.262390 0.964962i \(-0.584511\pi\)
−0.262390 + 0.964962i \(0.584511\pi\)
\(468\) −16.3503 6.48186i −0.755793 0.299624i
\(469\) −1.15518 −0.0533415
\(470\) −0.502606 + 2.63161i −0.0231835 + 0.121387i
\(471\) −1.13713 −0.0523964
\(472\) −31.2725 19.8751i −1.43944 0.914825i
\(473\) 21.3545 0.981883
\(474\) −1.27172 0.242884i −0.0584122 0.0111560i
\(475\) −6.20768 −0.284828
\(476\) 2.77922 7.01050i 0.127385 0.321326i
\(477\) 24.3323i 1.11410i
\(478\) −15.0064 2.86605i −0.686379 0.131090i
\(479\) −23.3114 −1.06512 −0.532562 0.846391i \(-0.678771\pi\)
−0.532562 + 0.846391i \(0.678771\pi\)
\(480\) −0.280375 + 0.203234i −0.0127973 + 0.00927633i
\(481\) 8.78693i 0.400650i
\(482\) −32.7722 6.25910i −1.49273 0.285094i
\(483\) 0.128653 0.200300i 0.00585393 0.00911398i
\(484\) 12.2414 + 4.85292i 0.556426 + 0.220587i
\(485\) 2.73446 0.124166
\(486\) −2.29211 0.437766i −0.103972 0.0198575i
\(487\) 31.8314i 1.44242i 0.692718 + 0.721209i \(0.256413\pi\)
−0.692718 + 0.721209i \(0.743587\pi\)
\(488\) 32.7089 + 20.7879i 1.48066 + 0.941026i
\(489\) −0.813420 −0.0367841
\(490\) −8.81035 1.68267i −0.398011 0.0760153i
\(491\) 27.6085i 1.24595i 0.782241 + 0.622976i \(0.214077\pi\)
−0.782241 + 0.622976i \(0.785923\pi\)
\(492\) 0.370855 0.935472i 0.0167194 0.0421743i
\(493\) 24.3849i 1.09824i
\(494\) −4.83376 + 25.3092i −0.217481 + 1.13872i
\(495\) 6.29633i 0.282999i
\(496\) −7.07914 + 7.52525i −0.317863 + 0.337894i
\(497\) 1.83377i 0.0822560i
\(498\) 0.742832 + 0.141872i 0.0332871 + 0.00635743i
\(499\) 36.7032i 1.64306i −0.570165 0.821530i \(-0.693121\pi\)
0.570165 0.821530i \(-0.306879\pi\)
\(500\) 0.737066 1.85923i 0.0329626 0.0831473i
\(501\) 0.248484 0.0111015
\(502\) 1.04436 5.46818i 0.0466119 0.244057i
\(503\) 43.1029 1.92186 0.960932 0.276783i \(-0.0892683\pi\)
0.960932 + 0.276783i \(0.0892683\pi\)
\(504\) −3.68602 + 5.79979i −0.164188 + 0.258343i
\(505\) 1.66981i 0.0743056i
\(506\) 9.81527 10.3340i 0.436342 0.459402i
\(507\) 0.268461i 0.0119228i
\(508\) −4.51408 + 11.3867i −0.200280 + 0.505201i
\(509\) 6.26173 0.277546 0.138773 0.990324i \(-0.455684\pi\)
0.138773 + 0.990324i \(0.455684\pi\)
\(510\) 0.395414 + 0.0755194i 0.0175092 + 0.00334405i
\(511\) 3.34928 0.148163
\(512\) −22.4433 2.88035i −0.991865 0.127295i
\(513\) 2.27861i 0.100603i
\(514\) −2.51448 + 13.1657i −0.110909 + 0.580713i
\(515\) 3.01723i 0.132955i
\(516\) −0.458509 + 1.15658i −0.0201847 + 0.0509155i
\(517\) 3.98103i 0.175086i
\(518\) −3.37223 0.644056i −0.148167 0.0282982i
\(519\) 1.12980i 0.0495929i
\(520\) −7.00630 4.45281i −0.307247 0.195269i
\(521\) 28.1514i 1.23334i −0.787223 0.616668i \(-0.788482\pi\)
0.787223 0.616668i \(-0.211518\pi\)
\(522\) −4.16854 + 21.8262i −0.182452 + 0.955306i
\(523\) 27.1711 1.18811 0.594054 0.804425i \(-0.297526\pi\)
0.594054 + 0.804425i \(0.297526\pi\)
\(524\) −11.4095 + 28.7800i −0.498424 + 1.25726i
\(525\) 0.0496387i 0.00216641i
\(526\) −6.47663 + 33.9112i −0.282395 + 1.47860i
\(527\) 12.0107 0.523194
\(528\) 0.352565 0.374783i 0.0153434 0.0163103i
\(529\) 9.56516 + 20.9167i 0.415877 + 0.909421i
\(530\) 2.15449 11.2808i 0.0935852 0.490006i
\(531\) 39.2525i 1.70341i
\(532\) 9.35883 + 3.71018i 0.405757 + 0.160857i
\(533\) 24.1241 1.04493
\(534\) 0.0946763 0.495719i 0.00409704 0.0214519i
\(535\) 12.4870i 0.539859i
\(536\) 2.16129 3.40068i 0.0933533 0.146887i
\(537\) 0.531096 0.0229185
\(538\) 0.559788 2.93101i 0.0241342 0.126365i
\(539\) 13.3281 0.574080
\(540\) −0.682454 0.270550i −0.0293681 0.0116426i
\(541\) 22.7074 0.976269 0.488134 0.872769i \(-0.337678\pi\)
0.488134 + 0.872769i \(0.337678\pi\)
\(542\) −35.8339 6.84385i −1.53920 0.293969i
\(543\) −1.34504 −0.0577210
\(544\) 15.4381 + 21.2978i 0.661902 + 0.913137i
\(545\) −11.3533 −0.486324
\(546\) 0.202381 + 0.0386523i 0.00866111 + 0.00165417i
\(547\) 35.1637i 1.50349i −0.659454 0.751745i \(-0.729213\pi\)
0.659454 0.751745i \(-0.270787\pi\)
\(548\) 12.9941 32.7772i 0.555079 1.40017i
\(549\) 41.0553i 1.75220i
\(550\) −0.557507 + 2.91907i −0.0237722 + 0.124470i
\(551\) 32.5532 1.38681
\(552\) 0.348950 + 0.753486i 0.0148523 + 0.0320705i
\(553\) −12.1271 −0.515696
\(554\) 1.60678 8.41299i 0.0682655 0.357434i
\(555\) 0.183267i 0.00777923i
\(556\) −1.76422 + 4.45020i −0.0748196 + 0.188730i
\(557\) 16.2425i 0.688219i 0.938930 + 0.344109i \(0.111819\pi\)
−0.938930 + 0.344109i \(0.888181\pi\)
\(558\) −10.7504 2.05320i −0.455101 0.0869188i
\(559\) −29.8260 −1.26151
\(560\) −2.22243 + 2.36249i −0.0939150 + 0.0998333i
\(561\) −0.598172 −0.0252549
\(562\) −37.5492 7.17145i −1.58392 0.302509i
\(563\) −30.7320 −1.29520 −0.647599 0.761981i \(-0.724227\pi\)
−0.647599 + 0.761981i \(0.724227\pi\)
\(564\) 0.215616 + 0.0854779i 0.00907906 + 0.00359927i
\(565\) −2.38506 −0.100340
\(566\) 5.58528 29.2441i 0.234767 1.22922i
\(567\) −7.27063 −0.305338
\(568\) −5.39835 3.43089i −0.226510 0.143957i
\(569\) 27.0381i 1.13350i −0.823891 0.566748i \(-0.808201\pi\)
0.823891 0.566748i \(-0.191799\pi\)
\(570\) −0.100816 + 0.527868i −0.00422273 + 0.0221100i
\(571\) −35.8888 −1.50190 −0.750949 0.660360i \(-0.770404\pi\)
−0.750949 + 0.660360i \(0.770404\pi\)
\(572\) 11.4672 + 4.54601i 0.479467 + 0.190078i
\(573\) 0.776464i 0.0324373i
\(574\) 1.76823 9.25831i 0.0738043 0.386434i
\(575\) −4.03517 2.59180i −0.168278 0.108085i
\(576\) −10.1773 21.7022i −0.424056 0.904257i
\(577\) 13.0988 0.545309 0.272654 0.962112i \(-0.412098\pi\)
0.272654 + 0.962112i \(0.412098\pi\)
\(578\) 1.22646 6.42166i 0.0510140 0.267106i
\(579\) 0.942492i 0.0391686i
\(580\) −3.86519 + 9.74983i −0.160493 + 0.404840i
\(581\) 7.08360 0.293877
\(582\) 0.0444093 0.232524i 0.00184082 0.00963843i
\(583\) 17.0653i 0.706771i
\(584\) −6.26631 + 9.85975i −0.259302 + 0.407999i
\(585\) 8.79413i 0.363593i
\(586\) 26.9606 + 5.14914i 1.11373 + 0.212709i
\(587\) 22.9195i 0.945990i 0.881065 + 0.472995i \(0.156827\pi\)
−0.881065 + 0.472995i \(0.843173\pi\)
\(588\) −0.286171 + 0.721858i −0.0118015 + 0.0297689i
\(589\) 16.0339i 0.660667i
\(590\) 3.47560 18.1980i 0.143088 0.749201i
\(591\) 0.589498i 0.0242487i
\(592\) 8.20526 8.72234i 0.337234 0.358486i
\(593\) −17.0185 −0.698866 −0.349433 0.936961i \(-0.613626\pi\)
−0.349433 + 0.936961i \(0.613626\pi\)
\(594\) 1.07148 + 0.204640i 0.0439634 + 0.00839648i
\(595\) 3.77065 0.154582
\(596\) −0.293576 + 0.740538i −0.0120254 + 0.0303336i
\(597\) 0.125485i 0.00513577i
\(598\) −13.7091 + 14.4336i −0.560605 + 0.590232i
\(599\) 47.0562i 1.92266i 0.275391 + 0.961332i \(0.411193\pi\)
−0.275391 + 0.961332i \(0.588807\pi\)
\(600\) −0.146129 0.0928711i −0.00596567 0.00379145i
\(601\) −17.1272 −0.698633 −0.349316 0.937005i \(-0.613586\pi\)
−0.349316 + 0.937005i \(0.613586\pi\)
\(602\) −2.18616 + 11.4466i −0.0891012 + 0.466528i
\(603\) 4.26845 0.173825
\(604\) 13.5407 34.1562i 0.550965 1.38979i
\(605\) 6.58411i 0.267682i
\(606\) 0.141992 + 0.0271187i 0.00576802 + 0.00110162i
\(607\) 4.02268i 0.163276i 0.996662 + 0.0816379i \(0.0260151\pi\)
−0.996662 + 0.0816379i \(0.973985\pi\)
\(608\) −28.4321 + 20.6094i −1.15307 + 0.835822i
\(609\) 0.260306i 0.0105481i
\(610\) −3.63523 + 19.0338i −0.147186 + 0.770658i
\(611\) 5.56034i 0.224947i
\(612\) −10.2693 + 25.9041i −0.415113 + 1.04711i
\(613\) 11.6582i 0.470870i 0.971890 + 0.235435i \(0.0756515\pi\)
−0.971890 + 0.235435i \(0.924348\pi\)
\(614\) 33.4683 + 6.39204i 1.35067 + 0.257962i
\(615\) 0.503150 0.0202890
\(616\) 2.58517 4.06764i 0.104159 0.163890i
\(617\) 20.3418i 0.818928i −0.912326 0.409464i \(-0.865716\pi\)
0.912326 0.409464i \(-0.134284\pi\)
\(618\) −0.256569 0.0490016i −0.0103207 0.00197113i
\(619\) 27.1446 1.09103 0.545516 0.838100i \(-0.316334\pi\)
0.545516 + 0.838100i \(0.316334\pi\)
\(620\) −4.80224 1.90378i −0.192863 0.0764578i
\(621\) −0.951353 + 1.48116i −0.0381765 + 0.0594369i
\(622\) 21.6508 + 4.13505i 0.868120 + 0.165800i
\(623\) 4.72715i 0.189389i
\(624\) −0.492430 + 0.523462i −0.0197130 + 0.0209553i
\(625\) 1.00000 0.0400000
\(626\) 37.3018 + 7.12420i 1.49088 + 0.284740i
\(627\) 0.798544i 0.0318908i
\(628\) 13.6917 34.5370i 0.546359 1.37818i
\(629\) −13.9213 −0.555078
\(630\) −3.37500 0.644583i −0.134463 0.0256808i
\(631\) −1.23029 −0.0489770 −0.0244885 0.999700i \(-0.507796\pi\)
−0.0244885 + 0.999700i \(0.507796\pi\)
\(632\) 22.6891 35.7002i 0.902523 1.42008i
\(633\) 0.253784 0.0100870
\(634\) −2.62113 + 13.7241i −0.104098 + 0.545053i
\(635\) −6.12439 −0.243039
\(636\) −0.924267 0.366413i −0.0366496 0.0145292i
\(637\) −18.6154 −0.737569
\(638\) 2.92358 15.3077i 0.115745 0.606036i
\(639\) 6.77587i 0.268049i
\(640\) −2.79675 10.9626i −0.110551 0.433334i
\(641\) 24.7595i 0.977943i −0.872300 0.488971i \(-0.837372\pi\)
0.872300 0.488971i \(-0.162628\pi\)
\(642\) 1.06182 + 0.202796i 0.0419069 + 0.00800371i
\(643\) 24.5967 0.969999 0.485000 0.874514i \(-0.338820\pi\)
0.485000 + 0.874514i \(0.338820\pi\)
\(644\) 4.53445 + 6.31917i 0.178682 + 0.249010i
\(645\) −0.622073 −0.0244941
\(646\) 40.0979 + 7.65821i 1.57763 + 0.301308i
\(647\) 15.0168i 0.590372i 0.955440 + 0.295186i \(0.0953817\pi\)
−0.955440 + 0.295186i \(0.904618\pi\)
\(648\) 13.6029 21.4036i 0.534374 0.840813i
\(649\) 27.5295i 1.08063i
\(650\) 0.778674 4.07709i 0.0305421 0.159916i
\(651\) 0.128213 0.00502505
\(652\) 9.79402 24.7051i 0.383563 0.967528i
\(653\) 37.5839 1.47077 0.735385 0.677650i \(-0.237001\pi\)
0.735385 + 0.677650i \(0.237001\pi\)
\(654\) −0.184385 + 0.965427i −0.00721002 + 0.0377512i
\(655\) −15.4796 −0.604836
\(656\) 23.9468 + 22.5272i 0.934965 + 0.879538i
\(657\) −12.3757 −0.482822
\(658\) 2.13394 + 0.407556i 0.0831895 + 0.0158882i
\(659\) −11.1544 −0.434512 −0.217256 0.976115i \(-0.569711\pi\)
−0.217256 + 0.976115i \(0.569711\pi\)
\(660\) 0.239168 + 0.0948148i 0.00930959 + 0.00369066i
\(661\) 10.2362i 0.398141i 0.979985 + 0.199070i \(0.0637922\pi\)
−0.979985 + 0.199070i \(0.936208\pi\)
\(662\) 22.8732 + 4.36851i 0.888993 + 0.169787i
\(663\) 0.835472 0.0324470
\(664\) −13.2530 + 20.8530i −0.514317 + 0.809255i
\(665\) 5.03372i 0.195199i
\(666\) 12.4605 + 2.37981i 0.482836 + 0.0922158i
\(667\) 21.1605 + 13.5914i 0.819338 + 0.526263i
\(668\) −2.99188 + 7.54694i −0.115759 + 0.292000i
\(669\) −0.967600 −0.0374096
\(670\) 1.97892 + 0.377949i 0.0764522 + 0.0146014i
\(671\) 28.7939i 1.11158i
\(672\) 0.164800 + 0.227352i 0.00635728 + 0.00877029i
\(673\) 30.8981 1.19103 0.595517 0.803343i \(-0.296947\pi\)
0.595517 + 0.803343i \(0.296947\pi\)
\(674\) 9.03927 + 1.72639i 0.348180 + 0.0664981i
\(675\) 0.367063i 0.0141283i
\(676\) 8.15369 + 3.23242i 0.313603 + 0.124324i
\(677\) 9.44975i 0.363184i −0.983374 0.181592i \(-0.941875\pi\)
0.983374 0.181592i \(-0.0581249\pi\)
\(678\) −0.0387347 + 0.202812i −0.00148760 + 0.00778897i
\(679\) 2.21734i 0.0850936i
\(680\) −7.05467 + 11.1002i −0.270534 + 0.425674i
\(681\) 0.621124i 0.0238015i
\(682\) 7.53972 + 1.44000i 0.288711 + 0.0551403i
\(683\) 44.7124i 1.71087i 0.517908 + 0.855436i \(0.326711\pi\)
−0.517908 + 0.855436i \(0.673289\pi\)
\(684\) −34.5813 13.7093i −1.32225 0.524187i
\(685\) 17.6295 0.673587
\(686\) −2.87036 + 15.0290i −0.109591 + 0.573811i
\(687\) −0.776061 −0.0296086
\(688\) −29.6068 27.8516i −1.12875 1.06183i
\(689\) 23.8352i 0.908048i
\(690\) −0.285926 + 0.301037i −0.0108850 + 0.0114603i
\(691\) 8.99904i 0.342339i −0.985242 0.171170i \(-0.945245\pi\)
0.985242 0.171170i \(-0.0547546\pi\)
\(692\) 34.3143 + 13.6035i 1.30444 + 0.517126i
\(693\) 5.10560 0.193946
\(694\) 5.34008 + 1.01989i 0.202707 + 0.0387146i
\(695\) −2.39357 −0.0907933
\(696\) 0.766300 + 0.487018i 0.0290465 + 0.0184604i
\(697\) 38.2203i 1.44770i
\(698\) −2.05340 + 10.7514i −0.0777222 + 0.406948i
\(699\) 0.829487i 0.0313741i
\(700\) −1.50762 0.597676i −0.0569827 0.0225900i
\(701\) 21.2257i 0.801685i −0.916147 0.400842i \(-0.868717\pi\)
0.916147 0.400842i \(-0.131283\pi\)
\(702\) −1.49655 0.285822i −0.0564835 0.0107877i
\(703\) 18.5846i 0.700930i
\(704\) 7.13781 + 15.2207i 0.269016 + 0.573650i
\(705\) 0.115970i 0.00436770i
\(706\) 5.63922 29.5266i 0.212235 1.11125i
\(707\) 1.35402 0.0509233
\(708\) −1.49102 0.591093i −0.0560358 0.0222146i
\(709\) 22.2321i 0.834944i −0.908690 0.417472i \(-0.862916\pi\)
0.908690 0.417472i \(-0.137084\pi\)
\(710\) 0.599967 3.14139i 0.0225164 0.117894i
\(711\) 44.8100 1.68051
\(712\) 13.9160 + 8.84422i 0.521524 + 0.331451i
\(713\) −6.69441 + 10.4225i −0.250708 + 0.390326i
\(714\) 0.0612376 0.320636i 0.00229176 0.0119995i
\(715\) 6.16770i 0.230659i
\(716\) −6.39468 + 16.1304i −0.238980 + 0.602821i
\(717\) −0.661307 −0.0246970
\(718\) 5.44275 28.4979i 0.203122 1.06353i
\(719\) 3.06420i 0.114275i −0.998366 0.0571377i \(-0.981803\pi\)
0.998366 0.0571377i \(-0.0181974\pi\)
\(720\) 8.21198 8.72948i 0.306042 0.325329i
\(721\) −2.44663 −0.0911172
\(722\) −5.18276 + 27.1366i −0.192882 + 1.00992i
\(723\) −1.44421 −0.0537108
\(724\) 16.1950 40.8513i 0.601881 1.51823i
\(725\) −5.24402 −0.194758
\(726\) 0.559877 + 0.106930i 0.0207790 + 0.00396854i
\(727\) −32.1935 −1.19399 −0.596995 0.802245i \(-0.703639\pi\)
−0.596995 + 0.802245i \(0.703639\pi\)
\(728\) −3.61072 + 5.68131i −0.133822 + 0.210563i
\(729\) 26.7979 0.992513
\(730\) −5.73756 1.09580i −0.212356 0.0405575i
\(731\) 47.2539i 1.74775i
\(732\) 1.55950 + 0.618242i 0.0576407 + 0.0228509i
\(733\) 32.2471i 1.19107i 0.803328 + 0.595536i \(0.203060\pi\)
−0.803328 + 0.595536i \(0.796940\pi\)
\(734\) −3.05005 + 15.9699i −0.112579 + 0.589459i
\(735\) −0.388256 −0.0143211
\(736\) −27.0864 + 1.52590i −0.998417 + 0.0562456i
\(737\) −2.99365 −0.110273
\(738\) −6.53366 + 34.2098i −0.240507 + 1.25928i
\(739\) 9.69792i 0.356744i 0.983963 + 0.178372i \(0.0570830\pi\)
−0.983963 + 0.178372i \(0.942917\pi\)
\(740\) 5.56616 + 2.20663i 0.204616 + 0.0811173i
\(741\) 1.11533i 0.0409728i
\(742\) −9.14742 1.74705i −0.335812 0.0641361i
\(743\) 11.0808 0.406514 0.203257 0.979125i \(-0.434847\pi\)
0.203257 + 0.979125i \(0.434847\pi\)
\(744\) −0.239879 + 0.377438i −0.00879438 + 0.0138376i
\(745\) −0.398304 −0.0145927
\(746\) −23.3508 4.45972i −0.854933 0.163282i
\(747\) −26.1742 −0.957664
\(748\) 7.20232 18.1676i 0.263343 0.664275i
\(749\) 10.1255 0.369978
\(750\) 0.0162406 0.0850346i 0.000593022 0.00310503i
\(751\) −12.5716 −0.458743 −0.229372 0.973339i \(-0.573667\pi\)
−0.229372 + 0.973339i \(0.573667\pi\)
\(752\) −5.19226 + 5.51946i −0.189342 + 0.201274i
\(753\) 0.240973i 0.00878153i
\(754\) −4.08338 + 21.3803i −0.148708 + 0.778625i
\(755\) 18.3711 0.668594
\(756\) −0.219385 + 0.553392i −0.00797894 + 0.0201267i
\(757\) 53.8727i 1.95804i −0.203772 0.979018i \(-0.565320\pi\)
0.203772 0.979018i \(-0.434680\pi\)
\(758\) −1.07353 + 5.62092i −0.0389923 + 0.204161i
\(759\) 0.333404 0.519076i 0.0121018 0.0188413i
\(760\) −14.8185 9.41780i −0.537523 0.341620i
\(761\) −19.8277 −0.718754 −0.359377 0.933192i \(-0.617011\pi\)
−0.359377 + 0.933192i \(0.617011\pi\)
\(762\) −0.0994638 + 0.520786i −0.00360319 + 0.0188661i
\(763\) 9.20626i 0.333289i
\(764\) 23.5827 + 9.34905i 0.853193 + 0.338237i
\(765\) −13.9327 −0.503738
\(766\) 2.94383 15.4137i 0.106365 0.556919i
\(767\) 38.4506i 1.38837i
\(768\) −0.977620 + 0.0597819i −0.0352768 + 0.00215719i
\(769\) 24.6347i 0.888350i 0.895940 + 0.444175i \(0.146503\pi\)
−0.895940 + 0.444175i \(0.853497\pi\)
\(770\) 2.36703 + 0.452074i 0.0853018 + 0.0162916i
\(771\) 0.580188i 0.0208949i
\(772\) 28.6253 + 11.3481i 1.03025 + 0.408427i
\(773\) 14.1357i 0.508428i 0.967148 + 0.254214i \(0.0818167\pi\)
−0.967148 + 0.254214i \(0.918183\pi\)
\(774\) 8.07794 42.2956i 0.290356 1.52028i
\(775\) 2.58292i 0.0927812i
\(776\) 6.52749 + 4.14851i 0.234323 + 0.148923i
\(777\) −0.148608 −0.00533129
\(778\) 25.0634 + 4.78681i 0.898568 + 0.171616i
\(779\) 51.0231 1.82809
\(780\) −0.334047 0.132429i −0.0119608 0.00474170i
\(781\) 4.75221i 0.170047i
\(782\) 22.8673 + 21.7195i 0.817734 + 0.776688i
\(783\) 1.92488i 0.0687898i
\(784\) −18.4786 17.3831i −0.659949 0.620825i
\(785\) 18.5760 0.663004
\(786\) −0.251397 + 1.31630i −0.00896703 + 0.0469508i
\(787\) −11.4575 −0.408417 −0.204209 0.978927i \(-0.565462\pi\)
−0.204209 + 0.978927i \(0.565462\pi\)
\(788\) 17.9042 + 7.09787i 0.637810 + 0.252851i
\(789\) 1.49441i 0.0532023i
\(790\) 20.7746 + 3.96769i 0.739126 + 0.141164i
\(791\) 1.93401i 0.0687654i
\(792\) −9.55229 + 15.0301i −0.339426 + 0.534071i
\(793\) 40.2166i 1.42813i
\(794\) 7.04821 36.9040i 0.250132 1.30967i
\(795\) 0.497124i 0.0176312i
\(796\) −3.81123 1.51091i −0.135086 0.0535528i
\(797\) 13.6750i 0.484393i 0.970227 + 0.242197i \(0.0778679\pi\)
−0.970227 + 0.242197i \(0.922132\pi\)
\(798\) 0.428040 + 0.0817505i 0.0151525 + 0.00289394i
\(799\) 8.80934 0.311652
\(800\) 4.58014 3.31999i 0.161932 0.117379i
\(801\) 17.4670i 0.617166i
\(802\) 1.29807 + 0.247915i 0.0458364 + 0.00875420i
\(803\) 8.67962 0.306297
\(804\) 0.0642775 0.162138i 0.00226689 0.00571818i
\(805\) −2.10165 + 3.27206i −0.0740735 + 0.115325i
\(806\) −10.5308 2.01125i −0.370931 0.0708434i
\(807\) 0.129164i 0.00454680i
\(808\) −2.53330 + 3.98604i −0.0891213 + 0.140228i
\(809\) −22.1172 −0.777598 −0.388799 0.921323i \(-0.627110\pi\)
−0.388799 + 0.921323i \(0.627110\pi\)
\(810\) 12.4551 + 2.37878i 0.437628 + 0.0835817i
\(811\) 52.1933i 1.83276i 0.400314 + 0.916378i \(0.368901\pi\)
−0.400314 + 0.916378i \(0.631099\pi\)
\(812\) 7.90600 + 3.13422i 0.277446 + 0.109990i
\(813\) −1.57914 −0.0553828
\(814\) −8.73911 1.66906i −0.306306 0.0585007i
\(815\) 13.2878 0.465453
\(816\) 0.829330 + 0.780165i 0.0290324 + 0.0273112i
\(817\) −63.0827 −2.20699
\(818\) 4.17985 21.8854i 0.146145 0.765206i
\(819\) −7.13103 −0.249178
\(820\) −6.05820 + 15.2816i −0.211561 + 0.533658i
\(821\) −30.4424 −1.06245 −0.531223 0.847232i \(-0.678267\pi\)
−0.531223 + 0.847232i \(0.678267\pi\)
\(822\) 0.286313 1.49911i 0.00998630 0.0522876i
\(823\) 13.7812i 0.480383i −0.970726 0.240191i \(-0.922790\pi\)
0.970726 0.240191i \(-0.0772102\pi\)
\(824\) 4.57751 7.20250i 0.159465 0.250911i
\(825\) 0.128638i 0.00447860i
\(826\) −14.7565 2.81831i −0.513444 0.0980617i
\(827\) 16.4113 0.570677 0.285339 0.958427i \(-0.407894\pi\)
0.285339 + 0.958427i \(0.407894\pi\)
\(828\) −16.7550 23.3496i −0.582276 0.811455i
\(829\) 14.8055 0.514215 0.257108 0.966383i \(-0.417231\pi\)
0.257108 + 0.966383i \(0.417231\pi\)
\(830\) −12.1347 2.31759i −0.421203 0.0804446i
\(831\) 0.370745i 0.0128610i
\(832\) −9.96943 21.2588i −0.345628 0.737017i
\(833\) 29.4927i 1.02186i
\(834\) −0.0388730 + 0.203536i −0.00134606 + 0.00704789i
\(835\) −4.05918 −0.140474
\(836\) 24.2533 + 9.61490i 0.838819 + 0.332538i
\(837\) −0.948094 −0.0327709
\(838\) 6.61375 34.6291i 0.228468 1.19624i
\(839\) −52.1192 −1.79936 −0.899678 0.436554i \(-0.856199\pi\)
−0.899678 + 0.436554i \(0.856199\pi\)
\(840\) −0.0753078 + 0.118493i −0.00259837 + 0.00408841i
\(841\) −1.50027 −0.0517336
\(842\) 22.6242 + 4.32095i 0.779683 + 0.148910i
\(843\) −1.65473 −0.0569918
\(844\) −3.05570 + 7.70791i −0.105181 + 0.265317i
\(845\) 4.38552i 0.150867i
\(846\) −7.88498 1.50594i −0.271091 0.0517751i
\(847\) 5.33896 0.183449
\(848\) 22.2573 23.6600i 0.764320 0.812486i
\(849\) 1.28874i 0.0442293i
\(850\) −6.45940 1.23367i −0.221556 0.0423144i
\(851\) 7.75932 12.0805i 0.265986 0.414114i
\(852\) −0.257383 0.102036i −0.00881780 0.00349570i
\(853\) −55.0356 −1.88438 −0.942192 0.335074i \(-0.891239\pi\)
−0.942192 + 0.335074i \(0.891239\pi\)
\(854\) 15.4343 + 2.94776i 0.528150 + 0.100870i
\(855\) 18.5998i 0.636099i
\(856\) −18.9442 + 29.8079i −0.647501 + 1.01881i
\(857\) −12.5217 −0.427735 −0.213867 0.976863i \(-0.568606\pi\)
−0.213867 + 0.976863i \(0.568606\pi\)
\(858\) 0.524469 + 0.100167i 0.0179051 + 0.00341965i
\(859\) 19.8656i 0.677806i −0.940821 0.338903i \(-0.889944\pi\)
0.940821 0.338903i \(-0.110056\pi\)
\(860\) 7.49010 18.8936i 0.255410 0.644265i
\(861\) 0.407997i 0.0139045i
\(862\) −6.52628 + 34.1712i −0.222286 + 1.16388i
\(863\) 14.6491i 0.498663i −0.968418 0.249331i \(-0.919789\pi\)
0.968418 0.249331i \(-0.0802108\pi\)
\(864\) −1.21864 1.68120i −0.0414591 0.0571956i
\(865\) 18.4562i 0.627530i
\(866\) −3.35658 0.641067i −0.114061 0.0217843i
\(867\) 0.282991i 0.00961088i
\(868\) −1.54375 + 3.89407i −0.0523983 + 0.132173i
\(869\) −31.4272 −1.06609
\(870\) −0.0851659 + 0.445923i −0.00288740 + 0.0151182i
\(871\) 4.18125 0.141676
\(872\) −27.1018 17.2244i −0.917783 0.583291i
\(873\) 8.19314i 0.277296i
\(874\) −28.9950 + 30.5273i −0.980769 + 1.03260i
\(875\) 0.810885i 0.0274129i
\(876\) −0.186363 + 0.470094i −0.00629661 + 0.0158830i
\(877\) −34.0401 −1.14945 −0.574726 0.818346i \(-0.694891\pi\)
−0.574726 + 0.818346i \(0.694891\pi\)
\(878\) −28.1150 5.36962i −0.948834 0.181216i
\(879\) 1.18810 0.0400737
\(880\) −5.75942 + 6.12236i −0.194150 + 0.206385i
\(881\) 3.90153i 0.131446i −0.997838 0.0657230i \(-0.979065\pi\)
0.997838 0.0657230i \(-0.0209354\pi\)
\(882\) 5.04171 26.3980i 0.169763 0.888869i
\(883\) 34.1418i 1.14896i −0.818518 0.574481i \(-0.805204\pi\)
0.818518 0.574481i \(-0.194796\pi\)
\(884\) −10.0595 + 25.3749i −0.338339 + 0.853450i
\(885\) 0.801954i 0.0269574i
\(886\) 22.8938 + 4.37244i 0.769133 + 0.146895i
\(887\) 21.0867i 0.708023i 0.935241 + 0.354012i \(0.115183\pi\)
−0.935241 + 0.354012i \(0.884817\pi\)
\(888\) 0.278038 0.437479i 0.00933033 0.0146809i
\(889\) 4.96618i 0.166560i
\(890\) −1.54661 + 8.09795i −0.0518425 + 0.271444i
\(891\) −18.8418 −0.631223
\(892\) 11.6504 29.3879i 0.390085 0.983979i
\(893\) 11.7602i 0.393541i
\(894\) −0.00646869 + 0.0338696i −0.000216345 + 0.00113277i
\(895\) −8.67585 −0.290002
\(896\) −8.88940 + 2.26784i −0.296974 + 0.0757633i
\(897\) −0.465668 + 0.724998i −0.0155482 + 0.0242070i
\(898\) −7.57052 + 39.6388i −0.252632 + 1.32276i
\(899\) 13.5449i 0.451747i
\(900\) 5.57072 + 2.20844i 0.185691 + 0.0736145i
\(901\) −37.7625 −1.25805
\(902\) 4.58234 23.9928i 0.152575 0.798874i
\(903\) 0.504430i 0.0167864i
\(904\) −5.69342 3.61842i −0.189360 0.120347i
\(905\) 21.9722 0.730380
\(906\) 0.298358 1.56218i 0.00991229 0.0519001i
\(907\) 40.0954 1.33135 0.665673 0.746243i \(-0.268145\pi\)
0.665673 + 0.746243i \(0.268145\pi\)
\(908\) −18.8647 7.47867i −0.626048 0.248188i
\(909\) −5.00317 −0.165945
\(910\) −3.30605 0.631415i −0.109594 0.0209312i
\(911\) −43.9481 −1.45607 −0.728033 0.685542i \(-0.759565\pi\)
−0.728033 + 0.685542i \(0.759565\pi\)
\(912\) −1.04150 + 1.10713i −0.0344875 + 0.0366609i
\(913\) 18.3571 0.607531
\(914\) −5.78734 1.10531i −0.191428 0.0365605i
\(915\) 0.838787i 0.0277295i
\(916\) 9.34420 23.5705i 0.308741 0.778791i
\(917\) 12.5521i 0.414508i
\(918\) −0.452833 + 2.37101i −0.0149457 + 0.0782548i
\(919\) 29.9313 0.987342 0.493671 0.869649i \(-0.335655\pi\)
0.493671 + 0.869649i \(0.335655\pi\)
\(920\) −5.70036 12.3088i −0.187935 0.405808i
\(921\) 1.47489 0.0485992
\(922\) 4.21101 22.0486i 0.138682 0.726131i
\(923\) 6.63744i 0.218474i
\(924\) 0.0768839 0.193938i 0.00252929 0.00638008i
\(925\) 2.99380i 0.0984355i
\(926\) 54.7728 + 10.4609i 1.79994 + 0.343768i
\(927\) 9.04039 0.296925
\(928\) −24.0183 + 17.4101i −0.788441 + 0.571514i
\(929\) −29.9571 −0.982862 −0.491431 0.870917i \(-0.663526\pi\)
−0.491431 + 0.870917i \(0.663526\pi\)
\(930\) −0.219638 0.0419481i −0.00720220 0.00137553i
\(931\) −39.3720 −1.29037
\(932\) −25.1931 9.98747i −0.825228 0.327150i
\(933\) 0.954114 0.0312363
\(934\) 3.00869 15.7533i 0.0984472 0.515463i
\(935\) 9.77160 0.319566
\(936\) 13.3418 20.9927i 0.436089 0.686166i
\(937\) 38.2177i 1.24852i 0.781218 + 0.624259i \(0.214599\pi\)
−0.781218 + 0.624259i \(0.785401\pi\)
\(938\) 0.306473 1.60467i 0.0100067 0.0523944i
\(939\) 1.64382 0.0536442
\(940\) −3.52225 1.39635i −0.114883 0.0455438i
\(941\) 1.41138i 0.0460096i 0.999735 + 0.0230048i \(0.00732330\pi\)
−0.999735 + 0.0230048i \(0.992677\pi\)
\(942\) 0.301684 1.57960i 0.00982941 0.0514661i
\(943\) 33.1664 + 21.3029i 1.08005 + 0.693717i
\(944\) 35.9053 38.1680i 1.16862 1.24226i
\(945\) −0.297646 −0.00968242
\(946\) −5.66541 + 29.6637i −0.184198 + 0.964450i
\(947\) 40.9764i 1.33155i 0.746150 + 0.665777i \(0.231900\pi\)
−0.746150 + 0.665777i \(0.768100\pi\)
\(948\) 0.674782 1.70212i 0.0219159 0.0552823i
\(949\) −12.1229 −0.393526
\(950\) 1.64691 8.62312i 0.0534329 0.279771i
\(951\) 0.604795i 0.0196118i
\(952\) 9.00099 + 5.72053i 0.291724 + 0.185403i
\(953\) 33.8456i 1.09637i 0.836358 + 0.548184i \(0.184681\pi\)
−0.836358 + 0.548184i \(0.815319\pi\)
\(954\) 33.8001 + 6.45541i 1.09432 + 0.209001i
\(955\) 12.6841i 0.410449i
\(956\) 7.96249 20.0852i 0.257525 0.649601i
\(957\) 0.674581i 0.0218061i
\(958\) 6.18456 32.3819i 0.199814 1.04621i
\(959\) 14.2955i 0.461625i
\(960\) −0.207930 0.443389i −0.00671090 0.0143103i
\(961\) 24.3285 0.784791
\(962\) 12.2060 + 2.33119i 0.393536 + 0.0751607i
\(963\) −37.4141 −1.20565
\(964\) 17.3891 43.8635i 0.560065 1.41275i
\(965\) 15.3963i 0.495625i
\(966\) 0.244106 + 0.231853i 0.00785399 + 0.00745976i
\(967\) 13.1812i 0.423879i 0.977283 + 0.211940i \(0.0679780\pi\)
−0.977283 + 0.211940i \(0.932022\pi\)
\(968\) −9.98889 + 15.7171i −0.321055 + 0.505166i
\(969\) 1.76704 0.0567655
\(970\) −0.725460 + 3.79846i −0.0232931 + 0.121961i
\(971\) −43.9189 −1.40942 −0.704712 0.709494i \(-0.748924\pi\)
−0.704712 + 0.709494i \(0.748924\pi\)
\(972\) 1.21621 3.06785i 0.0390098 0.0984012i
\(973\) 1.94091i 0.0622228i
\(974\) −44.2171 8.44494i −1.41681 0.270593i
\(975\) 0.179670i 0.00575404i
\(976\) −37.5544 + 39.9210i −1.20209 + 1.27784i
\(977\) 40.2462i 1.28759i 0.765198 + 0.643795i \(0.222641\pi\)
−0.765198 + 0.643795i \(0.777359\pi\)
\(978\) 0.215802 1.12993i 0.00690060 0.0361311i
\(979\) 12.2504i 0.391523i
\(980\) 4.67482 11.7921i 0.149332 0.376685i
\(981\) 34.0175i 1.08609i
\(982\) −38.3511 7.32459i −1.22383 0.233737i
\(983\) −0.484037 −0.0154384 −0.00771919 0.999970i \(-0.502457\pi\)
−0.00771919 + 0.999970i \(0.502457\pi\)
\(984\) 1.20108 + 0.763340i 0.0382890 + 0.0243344i
\(985\) 9.62990i 0.306834i
\(986\) 33.8732 + 6.46937i 1.07874 + 0.206027i
\(987\) 0.0940387 0.00299329
\(988\) −33.8748 13.4292i −1.07770 0.427240i
\(989\) −41.0056 26.3380i −1.30390 0.837499i
\(990\) −8.74627 1.67043i −0.277975 0.0530898i
\(991\) 16.2271i 0.515471i −0.966215 0.257736i \(-0.917024\pi\)
0.966215 0.257736i \(-0.0829764\pi\)
\(992\) −8.57526 11.8301i −0.272265 0.375607i
\(993\) 1.00798 0.0319873
\(994\) −2.54731 0.486505i −0.0807956 0.0154310i
\(995\) 2.04990i 0.0649862i
\(996\) −0.394150 + 0.994233i −0.0124891 + 0.0315035i
\(997\) 36.2944 1.14946 0.574728 0.818345i \(-0.305108\pi\)
0.574728 + 0.818345i \(0.305108\pi\)
\(998\) 50.9846 + 9.73744i 1.61389 + 0.308233i
\(999\) 1.09891 0.0347681
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 460.2.e.b.91.11 yes 32
4.3 odd 2 inner 460.2.e.b.91.9 32
23.22 odd 2 inner 460.2.e.b.91.12 yes 32
92.91 even 2 inner 460.2.e.b.91.10 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
460.2.e.b.91.9 32 4.3 odd 2 inner
460.2.e.b.91.10 yes 32 92.91 even 2 inner
460.2.e.b.91.11 yes 32 1.1 even 1 trivial
460.2.e.b.91.12 yes 32 23.22 odd 2 inner