Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [460,2,Mod(91,460)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(460, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("460.91");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 460 = 2^{2} \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 460.e (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.67311849298\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
91.1 | −1.39466 | − | 0.234385i | − | 1.37989i | 1.89013 | + | 0.653773i | − | 1.00000i | −0.323424 | + | 1.92446i | −2.31854 | −2.48284 | − | 1.35481i | 1.09592 | −0.234385 | + | 1.39466i | ||||||
91.2 | −1.39466 | − | 0.234385i | − | 1.37989i | 1.89013 | + | 0.653773i | 1.00000i | −0.323424 | + | 1.92446i | 2.31854 | −2.48284 | − | 1.35481i | 1.09592 | 0.234385 | − | 1.39466i | |||||||
91.3 | −1.39466 | + | 0.234385i | 1.37989i | 1.89013 | − | 0.653773i | − | 1.00000i | −0.323424 | − | 1.92446i | 2.31854 | −2.48284 | + | 1.35481i | 1.09592 | 0.234385 | + | 1.39466i | |||||||
91.4 | −1.39466 | + | 0.234385i | 1.37989i | 1.89013 | − | 0.653773i | 1.00000i | −0.323424 | − | 1.92446i | −2.31854 | −2.48284 | + | 1.35481i | 1.09592 | −0.234385 | − | 1.39466i | ||||||||
91.5 | −1.05127 | − | 0.945957i | − | 1.57817i | 0.210332 | + | 1.98891i | − | 1.00000i | −1.49288 | + | 1.65908i | 1.14830 | 1.66031 | − | 2.28984i | 0.509388 | −0.945957 | + | 1.05127i | ||||||
91.6 | −1.05127 | − | 0.945957i | − | 1.57817i | 0.210332 | + | 1.98891i | 1.00000i | −1.49288 | + | 1.65908i | −1.14830 | 1.66031 | − | 2.28984i | 0.509388 | 0.945957 | − | 1.05127i | |||||||
91.7 | −1.05127 | + | 0.945957i | 1.57817i | 0.210332 | − | 1.98891i | − | 1.00000i | −1.49288 | − | 1.65908i | −1.14830 | 1.66031 | + | 2.28984i | 0.509388 | 0.945957 | + | 1.05127i | |||||||
91.8 | −1.05127 | + | 0.945957i | 1.57817i | 0.210332 | − | 1.98891i | 1.00000i | −1.49288 | − | 1.65908i | 1.14830 | 1.66031 | + | 2.28984i | 0.509388 | −0.945957 | − | 1.05127i | ||||||||
91.9 | −0.265302 | − | 1.38911i | − | 0.0612154i | −1.85923 | + | 0.737066i | − | 1.00000i | −0.0850346 | + | 0.0162406i | 0.810885 | 1.51712 | + | 2.38712i | 2.99625 | −1.38911 | + | 0.265302i | ||||||
91.10 | −0.265302 | − | 1.38911i | − | 0.0612154i | −1.85923 | + | 0.737066i | 1.00000i | −0.0850346 | + | 0.0162406i | −0.810885 | 1.51712 | + | 2.38712i | 2.99625 | 1.38911 | − | 0.265302i | |||||||
91.11 | −0.265302 | + | 1.38911i | 0.0612154i | −1.85923 | − | 0.737066i | − | 1.00000i | −0.0850346 | − | 0.0162406i | −0.810885 | 1.51712 | − | 2.38712i | 2.99625 | 1.38911 | + | 0.265302i | |||||||
91.12 | −0.265302 | + | 1.38911i | 0.0612154i | −1.85923 | − | 0.737066i | 1.00000i | −0.0850346 | − | 0.0162406i | 0.810885 | 1.51712 | − | 2.38712i | 2.99625 | −1.38911 | − | 0.265302i | ||||||||
91.13 | −0.151248 | − | 1.40610i | − | 2.99817i | −1.95425 | + | 0.425339i | − | 1.00000i | −4.21573 | + | 0.453465i | 3.98264 | 0.893646 | + | 2.68354i | −5.98900 | −1.40610 | + | 0.151248i | ||||||
91.14 | −0.151248 | − | 1.40610i | − | 2.99817i | −1.95425 | + | 0.425339i | 1.00000i | −4.21573 | + | 0.453465i | −3.98264 | 0.893646 | + | 2.68354i | −5.98900 | 1.40610 | − | 0.151248i | |||||||
91.15 | −0.151248 | + | 1.40610i | 2.99817i | −1.95425 | − | 0.425339i | − | 1.00000i | −4.21573 | − | 0.453465i | −3.98264 | 0.893646 | − | 2.68354i | −5.98900 | 1.40610 | + | 0.151248i | |||||||
91.16 | −0.151248 | + | 1.40610i | 2.99817i | −1.95425 | − | 0.425339i | 1.00000i | −4.21573 | − | 0.453465i | 3.98264 | 0.893646 | − | 2.68354i | −5.98900 | −1.40610 | − | 0.151248i | ||||||||
91.17 | 0.341935 | − | 1.37225i | 2.41873i | −1.76616 | − | 0.938444i | − | 1.00000i | 3.31911 | + | 0.827049i | 2.44077 | −1.89170 | + | 2.10273i | −2.85025 | −1.37225 | − | 0.341935i | |||||||
91.18 | 0.341935 | − | 1.37225i | 2.41873i | −1.76616 | − | 0.938444i | 1.00000i | 3.31911 | + | 0.827049i | −2.44077 | −1.89170 | + | 2.10273i | −2.85025 | 1.37225 | + | 0.341935i | ||||||||
91.19 | 0.341935 | + | 1.37225i | − | 2.41873i | −1.76616 | + | 0.938444i | − | 1.00000i | 3.31911 | − | 0.827049i | −2.44077 | −1.89170 | − | 2.10273i | −2.85025 | 1.37225 | − | 0.341935i | ||||||
91.20 | 0.341935 | + | 1.37225i | − | 2.41873i | −1.76616 | + | 0.938444i | 1.00000i | 3.31911 | − | 0.827049i | 2.44077 | −1.89170 | − | 2.10273i | −2.85025 | −1.37225 | + | 0.341935i | |||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
23.b | odd | 2 | 1 | inner |
92.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 460.2.e.b | ✓ | 32 |
4.b | odd | 2 | 1 | inner | 460.2.e.b | ✓ | 32 |
23.b | odd | 2 | 1 | inner | 460.2.e.b | ✓ | 32 |
92.b | even | 2 | 1 | inner | 460.2.e.b | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
460.2.e.b | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
460.2.e.b | ✓ | 32 | 4.b | odd | 2 | 1 | inner |
460.2.e.b | ✓ | 32 | 23.b | odd | 2 | 1 | inner |
460.2.e.b | ✓ | 32 | 92.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{16} + 37T_{3}^{14} + 558T_{3}^{12} + 4419T_{3}^{10} + 19735T_{3}^{8} + 49530T_{3}^{6} + 64840T_{3}^{4} + 34400T_{3}^{2} + 128 \) acting on \(S_{2}^{\mathrm{new}}(460, [\chi])\).