L(s) = 1 | + (0.432 + 0.151i)3-s + (−1.40 − 0.320i)5-s + (−0.759 − 1.57i)7-s + (−2.18 − 1.73i)9-s + (0.426 − 3.78i)11-s + (−3.71 + 2.96i)13-s + (−0.558 − 0.350i)15-s + (1.08 − 1.08i)17-s + (−1.57 − 4.48i)19-s + (−0.0898 − 0.797i)21-s + (−0.0809 + 0.0184i)23-s + (−2.64 − 1.27i)25-s + (−1.41 − 2.24i)27-s + (3.03 + 4.44i)29-s + (8.91 − 5.60i)31-s + ⋯ |
L(s) = 1 | + (0.249 + 0.0873i)3-s + (−0.627 − 0.143i)5-s + (−0.287 − 0.596i)7-s + (−0.727 − 0.579i)9-s + (0.128 − 1.14i)11-s + (−1.03 + 0.821i)13-s + (−0.144 − 0.0905i)15-s + (0.263 − 0.263i)17-s + (−0.360 − 1.03i)19-s + (−0.0196 − 0.174i)21-s + (−0.0168 + 0.00385i)23-s + (−0.528 − 0.254i)25-s + (−0.271 − 0.432i)27-s + (0.563 + 0.826i)29-s + (1.60 − 1.00i)31-s + ⋯ |
Λ(s)=(=(464s/2ΓC(s)L(s)(−0.485+0.874i)Λ(2−s)
Λ(s)=(=(464s/2ΓC(s+1/2)L(s)(−0.485+0.874i)Λ(1−s)
Degree: |
2 |
Conductor: |
464
= 24⋅29
|
Sign: |
−0.485+0.874i
|
Analytic conductor: |
3.70505 |
Root analytic conductor: |
1.92485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ464(367,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 464, ( :1/2), −0.485+0.874i)
|
Particular Values
L(1) |
≈ |
0.404465−0.687161i |
L(21) |
≈ |
0.404465−0.687161i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 29 | 1+(−3.03−4.44i)T |
good | 3 | 1+(−0.432−0.151i)T+(2.34+1.87i)T2 |
| 5 | 1+(1.40+0.320i)T+(4.50+2.16i)T2 |
| 7 | 1+(0.759+1.57i)T+(−4.36+5.47i)T2 |
| 11 | 1+(−0.426+3.78i)T+(−10.7−2.44i)T2 |
| 13 | 1+(3.71−2.96i)T+(2.89−12.6i)T2 |
| 17 | 1+(−1.08+1.08i)T−17iT2 |
| 19 | 1+(1.57+4.48i)T+(−14.8+11.8i)T2 |
| 23 | 1+(0.0809−0.0184i)T+(20.7−9.97i)T2 |
| 31 | 1+(−8.91+5.60i)T+(13.4−27.9i)T2 |
| 37 | 1+(5.41−0.610i)T+(36.0−8.23i)T2 |
| 41 | 1+(0.943+0.943i)T+41iT2 |
| 43 | 1+(−0.824+1.31i)T+(−18.6−38.7i)T2 |
| 47 | 1+(6.23+0.702i)T+(45.8+10.4i)T2 |
| 53 | 1+(1.20−5.27i)T+(−47.7−22.9i)T2 |
| 59 | 1−13.1iT−59T2 |
| 61 | 1+(0.0136−0.0389i)T+(−47.6−38.0i)T2 |
| 67 | 1+(−5.77+7.24i)T+(−14.9−65.3i)T2 |
| 71 | 1+(2.67+3.35i)T+(−15.7+69.2i)T2 |
| 73 | 1+(−7.63+12.1i)T+(−31.6−65.7i)T2 |
| 79 | 1+(−5.46+0.616i)T+(77.0−17.5i)T2 |
| 83 | 1+(5.03−10.4i)T+(−51.7−64.8i)T2 |
| 89 | 1+(2.84+4.52i)T+(−38.6+80.1i)T2 |
| 97 | 1+(−3.29−9.40i)T+(−75.8+60.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.83425052977644722193873730974, −9.752449636299469113047579045908, −8.905853578243021280555464406093, −8.135154281934619845829127970425, −7.05042101926919263954610604592, −6.19449877650818291392112407579, −4.81573573652917167622783583542, −3.77248655630894694113549958077, −2.73864005154981613113038842211, −0.45548456559717816370641086771,
2.17953417817838588019758023822, 3.26194855317310529326761037321, 4.64210740826495191354345563455, 5.63085636206256354259704971809, 6.83294890190938577140423049001, 7.922522379946927416530586315594, 8.341252884944656620959997678714, 9.726157381873214768166074904786, 10.26050156583128793508453555152, 11.49791357624566246560267796985