Properties

Label 2-464-4.3-c2-0-1
Degree $2$
Conductor $464$
Sign $0.5 - 0.866i$
Analytic cond. $12.6430$
Root an. cond. $3.55571$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.45i·3-s − 3.94·5-s + 2.61i·7-s − 20.7·9-s + 15.3i·11-s + 1.27·13-s + 21.5i·15-s + 2.27·17-s + 29.0i·19-s + 14.2·21-s − 8.77i·23-s − 9.41·25-s + 64.1i·27-s + 5.38·29-s − 48.1i·31-s + ⋯
L(s)  = 1  − 1.81i·3-s − 0.789·5-s + 0.374i·7-s − 2.30·9-s + 1.39i·11-s + 0.0980·13-s + 1.43i·15-s + 0.133·17-s + 1.52i·19-s + 0.680·21-s − 0.381i·23-s − 0.376·25-s + 2.37i·27-s + 0.185·29-s − 1.55i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.5 - 0.866i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 464 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.5 - 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(464\)    =    \(2^{4} \cdot 29\)
Sign: $0.5 - 0.866i$
Analytic conductor: \(12.6430\)
Root analytic conductor: \(3.55571\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{464} (175, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 464,\ (\ :1),\ 0.5 - 0.866i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.5453627121\)
\(L(\frac12)\) \(\approx\) \(0.5453627121\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
29 \( 1 - 5.38T \)
good3 \( 1 + 5.45iT - 9T^{2} \)
5 \( 1 + 3.94T + 25T^{2} \)
7 \( 1 - 2.61iT - 49T^{2} \)
11 \( 1 - 15.3iT - 121T^{2} \)
13 \( 1 - 1.27T + 169T^{2} \)
17 \( 1 - 2.27T + 289T^{2} \)
19 \( 1 - 29.0iT - 361T^{2} \)
23 \( 1 + 8.77iT - 529T^{2} \)
31 \( 1 + 48.1iT - 961T^{2} \)
37 \( 1 + 54.8T + 1.36e3T^{2} \)
41 \( 1 - 10.1T + 1.68e3T^{2} \)
43 \( 1 + 0.0320iT - 1.84e3T^{2} \)
47 \( 1 - 86.1iT - 2.20e3T^{2} \)
53 \( 1 + 34.1T + 2.80e3T^{2} \)
59 \( 1 - 74.2iT - 3.48e3T^{2} \)
61 \( 1 - 35.9T + 3.72e3T^{2} \)
67 \( 1 - 65.2iT - 4.48e3T^{2} \)
71 \( 1 + 41.7iT - 5.04e3T^{2} \)
73 \( 1 + 105.T + 5.32e3T^{2} \)
79 \( 1 + 40.7iT - 6.24e3T^{2} \)
83 \( 1 - 97.7iT - 6.88e3T^{2} \)
89 \( 1 + 67.1T + 7.92e3T^{2} \)
97 \( 1 + 34.9T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.39797400493778386101345113633, −10.12413211180101816223744123416, −8.880202780249424862329559187898, −7.82377728294874823896933448703, −7.55602458753908769586511217159, −6.50574967356126174304337352095, −5.61335761884388530919105886910, −4.06999259133722725640931404169, −2.52506977152778236759171205549, −1.46837136865316426090019115282, 0.22795371246412992413264891489, 3.13515692296242365643761166674, 3.73045938764179470471492532758, 4.77563634985991118500960224751, 5.60264800694926695006897610341, 6.98939454750049952750551133236, 8.410741007203579114175611197887, 8.834101287331649889963223796603, 9.894374272645253739174042603292, 10.78442773039989610005855968803

Graph of the $Z$-function along the critical line