L(s) = 1 | − 5.45i·3-s − 3.94·5-s + 2.61i·7-s − 20.7·9-s + 15.3i·11-s + 1.27·13-s + 21.5i·15-s + 2.27·17-s + 29.0i·19-s + 14.2·21-s − 8.77i·23-s − 9.41·25-s + 64.1i·27-s + 5.38·29-s − 48.1i·31-s + ⋯ |
L(s) = 1 | − 1.81i·3-s − 0.789·5-s + 0.374i·7-s − 2.30·9-s + 1.39i·11-s + 0.0980·13-s + 1.43i·15-s + 0.133·17-s + 1.52i·19-s + 0.680·21-s − 0.381i·23-s − 0.376·25-s + 2.37i·27-s + 0.185·29-s − 1.55i·31-s + ⋯ |
Λ(s)=(=(464s/2ΓC(s)L(s)(0.5−0.866i)Λ(3−s)
Λ(s)=(=(464s/2ΓC(s+1)L(s)(0.5−0.866i)Λ(1−s)
Degree: |
2 |
Conductor: |
464
= 24⋅29
|
Sign: |
0.5−0.866i
|
Analytic conductor: |
12.6430 |
Root analytic conductor: |
3.55571 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ464(175,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 464, ( :1), 0.5−0.866i)
|
Particular Values
L(23) |
≈ |
0.5453627121 |
L(21) |
≈ |
0.5453627121 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 29 | 1−5.38T |
good | 3 | 1+5.45iT−9T2 |
| 5 | 1+3.94T+25T2 |
| 7 | 1−2.61iT−49T2 |
| 11 | 1−15.3iT−121T2 |
| 13 | 1−1.27T+169T2 |
| 17 | 1−2.27T+289T2 |
| 19 | 1−29.0iT−361T2 |
| 23 | 1+8.77iT−529T2 |
| 31 | 1+48.1iT−961T2 |
| 37 | 1+54.8T+1.36e3T2 |
| 41 | 1−10.1T+1.68e3T2 |
| 43 | 1+0.0320iT−1.84e3T2 |
| 47 | 1−86.1iT−2.20e3T2 |
| 53 | 1+34.1T+2.80e3T2 |
| 59 | 1−74.2iT−3.48e3T2 |
| 61 | 1−35.9T+3.72e3T2 |
| 67 | 1−65.2iT−4.48e3T2 |
| 71 | 1+41.7iT−5.04e3T2 |
| 73 | 1+105.T+5.32e3T2 |
| 79 | 1+40.7iT−6.24e3T2 |
| 83 | 1−97.7iT−6.88e3T2 |
| 89 | 1+67.1T+7.92e3T2 |
| 97 | 1+34.9T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.39797400493778386101345113633, −10.12413211180101816223744123416, −8.880202780249424862329559187898, −7.82377728294874823896933448703, −7.55602458753908769586511217159, −6.50574967356126174304337352095, −5.61335761884388530919105886910, −4.06999259133722725640931404169, −2.52506977152778236759171205549, −1.46837136865316426090019115282,
0.22795371246412992413264891489, 3.13515692296242365643761166674, 3.73045938764179470471492532758, 4.77563634985991118500960224751, 5.60264800694926695006897610341, 6.98939454750049952750551133236, 8.410741007203579114175611197887, 8.834101287331649889963223796603, 9.894374272645253739174042603292, 10.78442773039989610005855968803