Properties

Label 2-46410-1.1-c1-0-43
Degree $2$
Conductor $46410$
Sign $1$
Analytic cond. $370.585$
Root an. cond. $19.2506$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 7-s + 8-s + 9-s + 10-s + 6·11-s + 12-s + 13-s + 14-s + 15-s + 16-s − 17-s + 18-s + 8·19-s + 20-s + 21-s + 6·22-s − 6·23-s + 24-s + 25-s + 26-s + 27-s + 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.80·11-s + 0.288·12-s + 0.277·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s − 0.242·17-s + 0.235·18-s + 1.83·19-s + 0.223·20-s + 0.218·21-s + 1.27·22-s − 1.25·23-s + 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(46410\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17\)
Sign: $1$
Analytic conductor: \(370.585\)
Root analytic conductor: \(19.2506\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 46410,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(8.494895470\)
\(L(\frac12)\) \(\approx\) \(8.494895470\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 + T \)
good11 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 + 16 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.31818739191803, −14.22327614509370, −13.56184371391259, −13.47429513180473, −12.44750660096618, −12.05539695882001, −11.62037273052798, −11.27196542654731, −10.28366579946496, −9.949561419134629, −9.395396265060346, −8.856576542960562, −8.222847679143717, −7.741640443195931, −6.982793164175322, −6.518125781738914, −6.037010752812928, −5.397990052760057, −4.540472831266390, −4.288368868906024, −3.467341927829151, −3.015583367615290, −2.207068121071194, −1.427279243353953, −1.011408642176661, 1.011408642176661, 1.427279243353953, 2.207068121071194, 3.015583367615290, 3.467341927829151, 4.288368868906024, 4.540472831266390, 5.397990052760057, 6.037010752812928, 6.518125781738914, 6.982793164175322, 7.741640443195931, 8.222847679143717, 8.856576542960562, 9.395396265060346, 9.949561419134629, 10.28366579946496, 11.27196542654731, 11.62037273052798, 12.05539695882001, 12.44750660096618, 13.47429513180473, 13.56184371391259, 14.22327614509370, 14.31818739191803

Graph of the $Z$-function along the critical line