L(s) = 1 | + (−0.740 + 1.28i)2-s + (1.42 − 2.47i)3-s + (−0.0969 − 0.167i)4-s + (2.11 + 3.66i)6-s − 3.78·7-s − 2.67·8-s + (−2.58 − 4.46i)9-s − 5.59·11-s − 0.554·12-s + (−2.45 − 4.24i)13-s + (2.80 − 4.85i)14-s + (2.17 − 3.76i)16-s + (0.875 − 1.51i)17-s + 7.64·18-s + (0.636 + 4.31i)19-s + ⋯ |
L(s) = 1 | + (−0.523 + 0.907i)2-s + (0.824 − 1.42i)3-s + (−0.0484 − 0.0839i)4-s + (0.863 + 1.49i)6-s − 1.43·7-s − 0.945·8-s + (−0.860 − 1.48i)9-s − 1.68·11-s − 0.159·12-s + (−0.680 − 1.17i)13-s + (0.749 − 1.29i)14-s + (0.543 − 0.941i)16-s + (0.212 − 0.367i)17-s + 1.80·18-s + (0.145 + 0.989i)19-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)(−0.634+0.772i)Λ(2−s)
Λ(s)=(=(475s/2ΓC(s+1/2)L(s)(−0.634+0.772i)Λ(1−s)
Degree: |
2 |
Conductor: |
475
= 52⋅19
|
Sign: |
−0.634+0.772i
|
Analytic conductor: |
3.79289 |
Root analytic conductor: |
1.94753 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 475, ( :1/2), −0.634+0.772i)
|
Particular Values
L(1) |
≈ |
0.194282−0.411134i |
L(21) |
≈ |
0.194282−0.411134i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1+(−0.636−4.31i)T |
good | 2 | 1+(0.740−1.28i)T+(−1−1.73i)T2 |
| 3 | 1+(−1.42+2.47i)T+(−1.5−2.59i)T2 |
| 7 | 1+3.78T+7T2 |
| 11 | 1+5.59T+11T2 |
| 13 | 1+(2.45+4.24i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−0.875+1.51i)T+(−8.5−14.7i)T2 |
| 23 | 1+(0.290+0.503i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.832+1.44i)T+(−14.5+25.1i)T2 |
| 31 | 1−7.01T+31T2 |
| 37 | 1−2.36T+37T2 |
| 41 | 1+(0.417−0.723i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−0.535+0.927i)T+(−21.5−37.2i)T2 |
| 47 | 1+(1.93+3.34i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−3.39−5.88i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−0.204+0.353i)T+(−29.5−51.0i)T2 |
| 61 | 1+(6.98+12.0i)T+(−30.5+52.8i)T2 |
| 67 | 1+(0.390+0.676i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3.18−5.52i)T+(−35.5−61.4i)T2 |
| 73 | 1+(1.44−2.50i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−6.25+10.8i)T+(−39.5−68.4i)T2 |
| 83 | 1+10.3T+83T2 |
| 89 | 1+(8.92+15.4i)T+(−44.5+77.0i)T2 |
| 97 | 1+(5.49−9.52i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.27747347628217859737665544481, −9.583953662078833275275935480545, −8.388688612982934047630345236692, −7.83847393112498884660742091195, −7.29649252212206789852541178795, −6.36398132602313013751205238392, −5.56377324253329195883857251919, −3.10766019931239889004477538595, −2.67149044086321058488672341534, −0.26612347484237768736870817335,
2.56478735110779149141995716498, 3.00761041254087793203745019266, 4.26905804726042009955768048174, 5.44298691920395577942770580314, 6.76818940291783515479764649996, 8.191416463859144086378384875021, 9.207501392571091436554399812577, 9.629086925121742419757190989992, 10.26069167462378701618308759629, 10.85719300579328434375940571406