L(s) = 1 | − 4.27i·5-s + (1.13 − 2.38i)7-s + 2.15·11-s − 0.274i·17-s + 4.35i·19-s − 8.71·23-s − 13.2·25-s + (−10.2 − 4.86i)35-s − 10.8·43-s − 10.2i·47-s + (−4.41 − 5.43i)49-s − 9.19i·55-s + 15.1i·61-s − 2.98i·73-s + (2.44 − 5.13i)77-s + ⋯ |
L(s) = 1 | − 1.91i·5-s + (0.429 − 0.902i)7-s + 0.648·11-s − 0.0666i·17-s + 0.999i·19-s − 1.81·23-s − 2.65·25-s + (−1.72 − 0.821i)35-s − 1.65·43-s − 1.49i·47-s + (−0.630 − 0.776i)49-s − 1.23i·55-s + 1.94i·61-s − 0.349i·73-s + (0.278 − 0.585i)77-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)(−0.902−0.429i)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)(−0.902−0.429i)Λ(1−s)
Degree: |
2 |
Conductor: |
4788
= 22⋅32⋅7⋅19
|
Sign: |
−0.902−0.429i
|
Analytic conductor: |
38.2323 |
Root analytic conductor: |
6.18323 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4788(3457,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4788, ( :1/2), −0.902−0.429i)
|
Particular Values
L(1) |
≈ |
0.9400617574 |
L(21) |
≈ |
0.9400617574 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−1.13+2.38i)T |
| 19 | 1−4.35iT |
good | 5 | 1+4.27iT−5T2 |
| 11 | 1−2.15T+11T2 |
| 13 | 1+13T2 |
| 17 | 1+0.274iT−17T2 |
| 23 | 1+8.71T+23T2 |
| 29 | 1−29T2 |
| 31 | 1+31T2 |
| 37 | 1−37T2 |
| 41 | 1+41T2 |
| 43 | 1+10.8T+43T2 |
| 47 | 1+10.2iT−47T2 |
| 53 | 1−53T2 |
| 59 | 1+59T2 |
| 61 | 1−15.1iT−61T2 |
| 67 | 1−67T2 |
| 71 | 1−71T2 |
| 73 | 1+2.98iT−73T2 |
| 79 | 1−79T2 |
| 83 | 1+16iT−83T2 |
| 89 | 1+89T2 |
| 97 | 1+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.074956729001351382337881056332, −7.34154039710492284458297199739, −6.29771277070161195996649676662, −5.56845994320938185359888370407, −4.84198793863636285278349141516, −4.11869720376379473407117227168, −3.69681731720600744952169197880, −1.88940521856649130362146197349, −1.34031154422252612277520027858, −0.24376123539604450909640035407,
1.80098587634226705777557698142, 2.49839953159653315202832061915, 3.26622630577259000769840519619, 4.06119571803000183462266258181, 5.09206850597463874524555034469, 6.12876850460984176344053991510, 6.38835848113723807933510196080, 7.19070632970462574845336615407, 7.921085743830061977397748803055, 8.563225563598359289180044552178