Properties

Label 2-4788-133.132-c1-0-66
Degree $2$
Conductor $4788$
Sign $-0.902 - 0.429i$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.27i·5-s + (1.13 − 2.38i)7-s + 2.15·11-s − 0.274i·17-s + 4.35i·19-s − 8.71·23-s − 13.2·25-s + (−10.2 − 4.86i)35-s − 10.8·43-s − 10.2i·47-s + (−4.41 − 5.43i)49-s − 9.19i·55-s + 15.1i·61-s − 2.98i·73-s + (2.44 − 5.13i)77-s + ⋯
L(s)  = 1  − 1.91i·5-s + (0.429 − 0.902i)7-s + 0.648·11-s − 0.0666i·17-s + 0.999i·19-s − 1.81·23-s − 2.65·25-s + (−1.72 − 0.821i)35-s − 1.65·43-s − 1.49i·47-s + (−0.630 − 0.776i)49-s − 1.23i·55-s + 1.94i·61-s − 0.349i·73-s + (0.278 − 0.585i)77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.902 - 0.429i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.902 - 0.429i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-0.902 - 0.429i$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4788} (3457, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ -0.902 - 0.429i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9400617574\)
\(L(\frac12)\) \(\approx\) \(0.9400617574\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-1.13 + 2.38i)T \)
19 \( 1 - 4.35iT \)
good5 \( 1 + 4.27iT - 5T^{2} \)
11 \( 1 - 2.15T + 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + 0.274iT - 17T^{2} \)
23 \( 1 + 8.71T + 23T^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 10.8T + 43T^{2} \)
47 \( 1 + 10.2iT - 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 15.1iT - 61T^{2} \)
67 \( 1 - 67T^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 + 2.98iT - 73T^{2} \)
79 \( 1 - 79T^{2} \)
83 \( 1 + 16iT - 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.074956729001351382337881056332, −7.34154039710492284458297199739, −6.29771277070161195996649676662, −5.56845994320938185359888370407, −4.84198793863636285278349141516, −4.11869720376379473407117227168, −3.69681731720600744952169197880, −1.88940521856649130362146197349, −1.34031154422252612277520027858, −0.24376123539604450909640035407, 1.80098587634226705777557698142, 2.49839953159653315202832061915, 3.26622630577259000769840519619, 4.06119571803000183462266258181, 5.09206850597463874524555034469, 6.12876850460984176344053991510, 6.38835848113723807933510196080, 7.19070632970462574845336615407, 7.921085743830061977397748803055, 8.563225563598359289180044552178

Graph of the $Z$-function along the critical line