L(s) = 1 | + 0.618·2-s + 3-s − 1.61·4-s + 3.61·5-s + 0.618·6-s + 7-s − 2.23·8-s + 9-s + 2.23·10-s + 11-s − 1.61·12-s + 0.618·13-s + 0.618·14-s + 3.61·15-s + 1.85·16-s − 5.47·17-s + 0.618·18-s + 4.23·19-s − 5.85·20-s + 21-s + 0.618·22-s + 23-s − 2.23·24-s + 8.09·25-s + 0.381·26-s + 27-s − 1.61·28-s + ⋯ |
L(s) = 1 | + 0.437·2-s + 0.577·3-s − 0.809·4-s + 1.61·5-s + 0.252·6-s + 0.377·7-s − 0.790·8-s + 0.333·9-s + 0.707·10-s + 0.301·11-s − 0.467·12-s + 0.171·13-s + 0.165·14-s + 0.934·15-s + 0.463·16-s − 1.32·17-s + 0.145·18-s + 0.971·19-s − 1.30·20-s + 0.218·21-s + 0.131·22-s + 0.208·23-s − 0.456·24-s + 1.61·25-s + 0.0749·26-s + 0.192·27-s − 0.305·28-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.292814995 |
L(21) |
≈ |
2.292814995 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 7 | 1−T |
| 23 | 1−T |
good | 2 | 1−0.618T+2T2 |
| 5 | 1−3.61T+5T2 |
| 11 | 1−T+11T2 |
| 13 | 1−0.618T+13T2 |
| 17 | 1+5.47T+17T2 |
| 19 | 1−4.23T+19T2 |
| 29 | 1−1.76T+29T2 |
| 31 | 1+8.70T+31T2 |
| 37 | 1−0.236T+37T2 |
| 41 | 1+3.47T+41T2 |
| 43 | 1+3.85T+43T2 |
| 47 | 1−11.7T+47T2 |
| 53 | 1+0.0901T+53T2 |
| 59 | 1+3.61T+59T2 |
| 61 | 1+7.85T+61T2 |
| 67 | 1+8.09T+67T2 |
| 71 | 1+10.3T+71T2 |
| 73 | 1−1.76T+73T2 |
| 79 | 1+14.2T+79T2 |
| 83 | 1+17.9T+83T2 |
| 89 | 1−13.5T+89T2 |
| 97 | 1−6.70T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.81527660649945414976973685101, −9.883853675703476396976187449017, −9.102666662268302116038186060727, −8.718857592445549267898173247998, −7.25858215220100463093501573265, −6.09140108542775404097550834575, −5.28527823728134241165798506356, −4.29191789780391757303113677118, −2.94766514301093849313159544074, −1.64314884892201059797517287380,
1.64314884892201059797517287380, 2.94766514301093849313159544074, 4.29191789780391757303113677118, 5.28527823728134241165798506356, 6.09140108542775404097550834575, 7.25858215220100463093501573265, 8.718857592445549267898173247998, 9.102666662268302116038186060727, 9.883853675703476396976187449017, 10.81527660649945414976973685101