Properties

Label 2-483-1.1-c1-0-10
Degree $2$
Conductor $483$
Sign $1$
Analytic cond. $3.85677$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.618·2-s + 3-s − 1.61·4-s + 3.61·5-s + 0.618·6-s + 7-s − 2.23·8-s + 9-s + 2.23·10-s + 11-s − 1.61·12-s + 0.618·13-s + 0.618·14-s + 3.61·15-s + 1.85·16-s − 5.47·17-s + 0.618·18-s + 4.23·19-s − 5.85·20-s + 21-s + 0.618·22-s + 23-s − 2.23·24-s + 8.09·25-s + 0.381·26-s + 27-s − 1.61·28-s + ⋯
L(s)  = 1  + 0.437·2-s + 0.577·3-s − 0.809·4-s + 1.61·5-s + 0.252·6-s + 0.377·7-s − 0.790·8-s + 0.333·9-s + 0.707·10-s + 0.301·11-s − 0.467·12-s + 0.171·13-s + 0.165·14-s + 0.934·15-s + 0.463·16-s − 1.32·17-s + 0.145·18-s + 0.971·19-s − 1.30·20-s + 0.218·21-s + 0.131·22-s + 0.208·23-s − 0.456·24-s + 1.61·25-s + 0.0749·26-s + 0.192·27-s − 0.305·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $1$
Analytic conductor: \(3.85677\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 483,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.292814995\)
\(L(\frac12)\) \(\approx\) \(2.292814995\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
7 \( 1 - T \)
23 \( 1 - T \)
good2 \( 1 - 0.618T + 2T^{2} \)
5 \( 1 - 3.61T + 5T^{2} \)
11 \( 1 - T + 11T^{2} \)
13 \( 1 - 0.618T + 13T^{2} \)
17 \( 1 + 5.47T + 17T^{2} \)
19 \( 1 - 4.23T + 19T^{2} \)
29 \( 1 - 1.76T + 29T^{2} \)
31 \( 1 + 8.70T + 31T^{2} \)
37 \( 1 - 0.236T + 37T^{2} \)
41 \( 1 + 3.47T + 41T^{2} \)
43 \( 1 + 3.85T + 43T^{2} \)
47 \( 1 - 11.7T + 47T^{2} \)
53 \( 1 + 0.0901T + 53T^{2} \)
59 \( 1 + 3.61T + 59T^{2} \)
61 \( 1 + 7.85T + 61T^{2} \)
67 \( 1 + 8.09T + 67T^{2} \)
71 \( 1 + 10.3T + 71T^{2} \)
73 \( 1 - 1.76T + 73T^{2} \)
79 \( 1 + 14.2T + 79T^{2} \)
83 \( 1 + 17.9T + 83T^{2} \)
89 \( 1 - 13.5T + 89T^{2} \)
97 \( 1 - 6.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.81527660649945414976973685101, −9.883853675703476396976187449017, −9.102666662268302116038186060727, −8.718857592445549267898173247998, −7.25858215220100463093501573265, −6.09140108542775404097550834575, −5.28527823728134241165798506356, −4.29191789780391757303113677118, −2.94766514301093849313159544074, −1.64314884892201059797517287380, 1.64314884892201059797517287380, 2.94766514301093849313159544074, 4.29191789780391757303113677118, 5.28527823728134241165798506356, 6.09140108542775404097550834575, 7.25858215220100463093501573265, 8.718857592445549267898173247998, 9.102666662268302116038186060727, 9.883853675703476396976187449017, 10.81527660649945414976973685101

Graph of the $Z$-function along the critical line