Properties

Label 2-504-1.1-c7-0-43
Degree $2$
Conductor $504$
Sign $-1$
Analytic cond. $157.442$
Root an. cond. $12.5475$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 160·5-s − 343·7-s + 6.84e3·11-s − 2.90e3·13-s − 1.65e4·17-s − 6.71e3·19-s + 976·23-s − 5.25e4·25-s + 6.16e4·29-s − 6.92e4·31-s − 5.48e4·35-s − 5.33e5·37-s − 1.83e5·41-s + 9.66e5·43-s + 1.90e5·47-s + 1.17e5·49-s + 7.85e5·53-s + 1.09e6·55-s − 2.89e6·59-s − 9.58e4·61-s − 4.64e5·65-s − 9.91e5·67-s − 1.06e6·71-s + 2.52e6·73-s − 2.34e6·77-s + 2.85e5·79-s − 7.09e6·83-s + ⋯
L(s)  = 1  + 0.572·5-s − 0.377·7-s + 1.54·11-s − 0.366·13-s − 0.817·17-s − 0.224·19-s + 0.0167·23-s − 0.672·25-s + 0.469·29-s − 0.417·31-s − 0.216·35-s − 1.73·37-s − 0.415·41-s + 1.85·43-s + 0.267·47-s + 1/7·49-s + 0.724·53-s + 0.886·55-s − 1.83·59-s − 0.0540·61-s − 0.209·65-s − 0.402·67-s − 0.354·71-s + 0.759·73-s − 0.585·77-s + 0.0652·79-s − 1.36·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(504\)    =    \(2^{3} \cdot 3^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(157.442\)
Root analytic conductor: \(12.5475\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 504,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + p^{3} T \)
good5 \( 1 - 32 p T + p^{7} T^{2} \)
11 \( 1 - 6840 T + p^{7} T^{2} \)
13 \( 1 + 2900 T + p^{7} T^{2} \)
17 \( 1 + 16566 T + p^{7} T^{2} \)
19 \( 1 + 6718 T + p^{7} T^{2} \)
23 \( 1 - 976 T + p^{7} T^{2} \)
29 \( 1 - 61662 T + p^{7} T^{2} \)
31 \( 1 + 69236 T + p^{7} T^{2} \)
37 \( 1 + 533062 T + p^{7} T^{2} \)
41 \( 1 + 183158 T + p^{7} T^{2} \)
43 \( 1 - 966864 T + p^{7} T^{2} \)
47 \( 1 - 190268 T + p^{7} T^{2} \)
53 \( 1 - 785010 T + p^{7} T^{2} \)
59 \( 1 + 2893594 T + p^{7} T^{2} \)
61 \( 1 + 95896 T + p^{7} T^{2} \)
67 \( 1 + 991644 T + p^{7} T^{2} \)
71 \( 1 + 1068160 T + p^{7} T^{2} \)
73 \( 1 - 2523458 T + p^{7} T^{2} \)
79 \( 1 - 285848 T + p^{7} T^{2} \)
83 \( 1 + 7094938 T + p^{7} T^{2} \)
89 \( 1 - 252390 T + p^{7} T^{2} \)
97 \( 1 + 1824794 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.258613466510256434370301669858, −8.733258954856603251660315078854, −7.33697557130672408377368667970, −6.53872848419034886629005382822, −5.78166006549148570393319928509, −4.52099969654228695501655265317, −3.59951770344855555979841821508, −2.30583993716523161450841664353, −1.33801742610716765808418334057, 0, 1.33801742610716765808418334057, 2.30583993716523161450841664353, 3.59951770344855555979841821508, 4.52099969654228695501655265317, 5.78166006549148570393319928509, 6.53872848419034886629005382822, 7.33697557130672408377368667970, 8.733258954856603251660315078854, 9.258613466510256434370301669858

Graph of the $Z$-function along the critical line