L(s) = 1 | + (−1.5 + 0.866i)2-s + (0.5 + 0.866i)3-s + (0.5 − 0.866i)4-s + (−1.5 − 0.866i)6-s + (−3 − 1.73i)7-s − 1.73i·8-s + (−0.499 + 0.866i)9-s + (3 − 1.73i)11-s + 12-s + 6·14-s + (2.49 + 4.33i)16-s + (3 − 5.19i)17-s − 1.73i·18-s + (3 + 1.73i)19-s − 3.46i·21-s + (−3 + 5.19i)22-s + ⋯ |
L(s) = 1 | + (−1.06 + 0.612i)2-s + (0.288 + 0.499i)3-s + (0.250 − 0.433i)4-s + (−0.612 − 0.353i)6-s + (−1.13 − 0.654i)7-s − 0.612i·8-s + (−0.166 + 0.288i)9-s + (0.904 − 0.522i)11-s + 0.288·12-s + 1.60·14-s + (0.624 + 1.08i)16-s + (0.727 − 1.26i)17-s − 0.408i·18-s + (0.688 + 0.397i)19-s − 0.755i·21-s + (−0.639 + 1.10i)22-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(0.964−0.265i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(0.964−0.265i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
0.964−0.265i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), 0.964−0.265i)
|
Particular Values
L(1) |
≈ |
0.757699+0.102225i |
L(21) |
≈ |
0.757699+0.102225i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5−0.866i)T |
| 13 | 1 |
good | 2 | 1+(1.5−0.866i)T+(1−1.73i)T2 |
| 5 | 1−5T2 |
| 7 | 1+(3+1.73i)T+(3.5+6.06i)T2 |
| 11 | 1+(−3+1.73i)T+(5.5−9.52i)T2 |
| 17 | 1+(−3+5.19i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3−1.73i)T+(9.5+16.4i)T2 |
| 23 | 1+(−11.5+19.9i)T2 |
| 29 | 1+(3+5.19i)T+(−14.5+25.1i)T2 |
| 31 | 1−3.46iT−31T2 |
| 37 | 1+(6−3.46i)T+(18.5−32.0i)T2 |
| 41 | 1+(−6+3.46i)T+(20.5−35.5i)T2 |
| 43 | 1+(−2+3.46i)T+(−21.5−37.2i)T2 |
| 47 | 1+3.46iT−47T2 |
| 53 | 1−6T+53T2 |
| 59 | 1+(−9−5.19i)T+(29.5+51.0i)T2 |
| 61 | 1+(−1+1.73i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−9+5.19i)T+(33.5−58.0i)T2 |
| 71 | 1+(−3−1.73i)T+(35.5+61.4i)T2 |
| 73 | 1−73T2 |
| 79 | 1+8T+79T2 |
| 83 | 1−3.46iT−83T2 |
| 89 | 1+(−6+3.46i)T+(44.5−77.0i)T2 |
| 97 | 1+(12+6.92i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.45737014804363880044918247950, −9.784279867347200058000851551102, −9.238730487837506726398540269362, −8.424945101879720860170709452951, −7.29663959649544371009586103992, −6.77056571878159983454859394878, −5.56565213639817030126170087840, −3.95810825017970346184274956770, −3.19004994129091839680150281350, −0.75791641788707269968501172580,
1.21799310853268573511548543471, 2.50052401206649616738105829340, 3.62528122291624945926772322282, 5.42793168713795955413936074046, 6.45756177055693616703738269197, 7.43514340593631472008992573431, 8.521584955690817098320288158146, 9.222001013497993981012487905346, 9.745189651565705237300685453805, 10.70823101381231867160946177586