L(s) = 1 | + (−1.5 − 0.866i)2-s + (0.5 − 0.866i)3-s + (0.5 + 0.866i)4-s + (−1.5 + 0.866i)6-s + (−3 + 1.73i)7-s + 1.73i·8-s + (−0.499 − 0.866i)9-s + (3 + 1.73i)11-s + 12-s + 6·14-s + (2.49 − 4.33i)16-s + (3 + 5.19i)17-s + 1.73i·18-s + (3 − 1.73i)19-s + 3.46i·21-s + (−3 − 5.19i)22-s + ⋯ |
L(s) = 1 | + (−1.06 − 0.612i)2-s + (0.288 − 0.499i)3-s + (0.250 + 0.433i)4-s + (−0.612 + 0.353i)6-s + (−1.13 + 0.654i)7-s + 0.612i·8-s + (−0.166 − 0.288i)9-s + (0.904 + 0.522i)11-s + 0.288·12-s + 1.60·14-s + (0.624 − 1.08i)16-s + (0.727 + 1.26i)17-s + 0.408i·18-s + (0.688 − 0.397i)19-s + 0.755i·21-s + (−0.639 − 1.10i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.265i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.757699 - 0.102225i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.757699 - 0.102225i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (1.5 + 0.866i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 - 5T^{2} \) |
| 7 | \( 1 + (3 - 1.73i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3 - 1.73i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3 - 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3 + 1.73i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3 - 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 3.46iT - 31T^{2} \) |
| 37 | \( 1 + (6 + 3.46i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-6 - 3.46i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 - 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 3.46iT - 47T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + (-9 + 5.19i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 - 1.73i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-9 - 5.19i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3 + 1.73i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + 8T + 79T^{2} \) |
| 83 | \( 1 + 3.46iT - 83T^{2} \) |
| 89 | \( 1 + (-6 - 3.46i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (12 - 6.92i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.70823101381231867160946177586, −9.745189651565705237300685453805, −9.222001013497993981012487905346, −8.521584955690817098320288158146, −7.43514340593631472008992573431, −6.45756177055693616703738269197, −5.42793168713795955413936074046, −3.62528122291624945926772322282, −2.50052401206649616738105829340, −1.21799310853268573511548543471,
0.75791641788707269968501172580, 3.19004994129091839680150281350, 3.95810825017970346184274956770, 5.56565213639817030126170087840, 6.77056571878159983454859394878, 7.29663959649544371009586103992, 8.424945101879720860170709452951, 9.238730487837506726398540269362, 9.784279867347200058000851551102, 10.45737014804363880044918247950