L(s) = 1 | + 2-s − 3-s + 4-s − 5-s − 6-s + 2·7-s + 8-s + 9-s − 10-s − 12-s + 4·13-s + 2·14-s + 15-s + 16-s − 17-s + 18-s + 4·19-s − 20-s − 2·21-s + 4·23-s − 24-s + 25-s + 4·26-s − 27-s + 2·28-s + 2·29-s + 30-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.755·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.288·12-s + 1.10·13-s + 0.534·14-s + 0.258·15-s + 1/4·16-s − 0.242·17-s + 0.235·18-s + 0.917·19-s − 0.223·20-s − 0.436·21-s + 0.834·23-s − 0.204·24-s + 1/5·25-s + 0.784·26-s − 0.192·27-s + 0.377·28-s + 0.371·29-s + 0.182·30-s + ⋯ |
Λ(s)=(=(510s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(510s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.936112318 |
L(21) |
≈ |
1.936112318 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+T |
| 5 | 1+T |
| 17 | 1+T |
good | 7 | 1−2T+pT2 |
| 11 | 1+pT2 |
| 13 | 1−4T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1−4T+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1+4T+pT2 |
| 43 | 1−10T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1+2T+pT2 |
| 61 | 1+14T+pT2 |
| 67 | 1−2T+pT2 |
| 71 | 1+6T+pT2 |
| 73 | 1+4T+pT2 |
| 79 | 1+12T+pT2 |
| 83 | 1−8T+pT2 |
| 89 | 1+10T+pT2 |
| 97 | 1−8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.17937595466176513744449870847, −10.40568418942802751264406629690, −9.065035379514449228234893396125, −8.037143896449908332265909173396, −7.13577035934415708186454315215, −6.13674211142237372481129150645, −5.16788486225288439800302517751, −4.32574622516919833254834247273, −3.16587562444602674822441472468, −1.37173249517559434715622111936,
1.37173249517559434715622111936, 3.16587562444602674822441472468, 4.32574622516919833254834247273, 5.16788486225288439800302517751, 6.13674211142237372481129150645, 7.13577035934415708186454315215, 8.037143896449908332265909173396, 9.065035379514449228234893396125, 10.40568418942802751264406629690, 11.17937595466176513744449870847