L(s) = 1 | + 2-s − 3-s + 4-s − 5-s − 6-s + 2·7-s + 8-s + 9-s − 10-s − 12-s + 4·13-s + 2·14-s + 15-s + 16-s − 17-s + 18-s + 4·19-s − 20-s − 2·21-s + 4·23-s − 24-s + 25-s + 4·26-s − 27-s + 2·28-s + 2·29-s + 30-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.755·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.288·12-s + 1.10·13-s + 0.534·14-s + 0.258·15-s + 1/4·16-s − 0.242·17-s + 0.235·18-s + 0.917·19-s − 0.223·20-s − 0.436·21-s + 0.834·23-s − 0.204·24-s + 1/5·25-s + 0.784·26-s − 0.192·27-s + 0.377·28-s + 0.371·29-s + 0.182·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 510 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 510 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.936112318\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.936112318\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 + T \) |
| 17 | \( 1 + T \) |
good | 7 | \( 1 - 2 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 - 4 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 - 4 T + p T^{2} \) |
| 29 | \( 1 - 2 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 + 2 T + p T^{2} \) |
| 41 | \( 1 + 4 T + p T^{2} \) |
| 43 | \( 1 - 10 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 - 2 T + p T^{2} \) |
| 59 | \( 1 + 2 T + p T^{2} \) |
| 61 | \( 1 + 14 T + p T^{2} \) |
| 67 | \( 1 - 2 T + p T^{2} \) |
| 71 | \( 1 + 6 T + p T^{2} \) |
| 73 | \( 1 + 4 T + p T^{2} \) |
| 79 | \( 1 + 12 T + p T^{2} \) |
| 83 | \( 1 - 8 T + p T^{2} \) |
| 89 | \( 1 + 10 T + p T^{2} \) |
| 97 | \( 1 - 8 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.17937595466176513744449870847, −10.40568418942802751264406629690, −9.065035379514449228234893396125, −8.037143896449908332265909173396, −7.13577035934415708186454315215, −6.13674211142237372481129150645, −5.16788486225288439800302517751, −4.32574622516919833254834247273, −3.16587562444602674822441472468, −1.37173249517559434715622111936,
1.37173249517559434715622111936, 3.16587562444602674822441472468, 4.32574622516919833254834247273, 5.16788486225288439800302517751, 6.13674211142237372481129150645, 7.13577035934415708186454315215, 8.037143896449908332265909173396, 9.065035379514449228234893396125, 10.40568418942802751264406629690, 11.17937595466176513744449870847