L(s) = 1 | − 0.193·2-s + 3-s − 1.96·4-s − 0.193·6-s + 7-s + 0.768·8-s + 9-s + 2·11-s − 1.96·12-s − 1.35·13-s − 0.193·14-s + 3.77·16-s + 3.35·17-s − 0.193·18-s + 5.35·19-s + 21-s − 0.387·22-s − 4.96·23-s + 0.768·24-s + 0.261·26-s + 27-s − 1.96·28-s + 7.92·29-s + 4.57·31-s − 2.26·32-s + 2·33-s − 0.649·34-s + ⋯ |
L(s) = 1 | − 0.137·2-s + 0.577·3-s − 0.981·4-s − 0.0791·6-s + 0.377·7-s + 0.271·8-s + 0.333·9-s + 0.603·11-s − 0.566·12-s − 0.374·13-s − 0.0518·14-s + 0.943·16-s + 0.812·17-s − 0.0457·18-s + 1.22·19-s + 0.218·21-s − 0.0826·22-s − 1.03·23-s + 0.156·24-s + 0.0513·26-s + 0.192·27-s − 0.370·28-s + 1.47·29-s + 0.821·31-s − 0.401·32-s + 0.348·33-s − 0.111·34-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(525s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.454583486 |
L(21) |
≈ |
1.454583486 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 5 | 1 |
| 7 | 1−T |
good | 2 | 1+0.193T+2T2 |
| 11 | 1−2T+11T2 |
| 13 | 1+1.35T+13T2 |
| 17 | 1−3.35T+17T2 |
| 19 | 1−5.35T+19T2 |
| 23 | 1+4.96T+23T2 |
| 29 | 1−7.92T+29T2 |
| 31 | 1−4.57T+31T2 |
| 37 | 1−0.775T+37T2 |
| 41 | 1−3.73T+41T2 |
| 43 | 1−12.6T+43T2 |
| 47 | 1+9.92T+47T2 |
| 53 | 1+8.57T+53T2 |
| 59 | 1+8.62T+59T2 |
| 61 | 1+8.70T+61T2 |
| 67 | 1+9.92T+67T2 |
| 71 | 1−2T+71T2 |
| 73 | 1−9.35T+73T2 |
| 79 | 1−10.7T+79T2 |
| 83 | 1+3.22T+83T2 |
| 89 | 1−1.03T+89T2 |
| 97 | 1−18.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.61797598792780120314623660474, −9.697774530240902187425587204845, −9.240701171692835591998690599415, −8.095944194541780680855303610191, −7.68234739127162575410322514300, −6.22924475067329073486711598694, −5.02522262844140395814578506502, −4.15816000723335585044553795505, −3.00963324380550823526572834362, −1.22392924948101114786523316269,
1.22392924948101114786523316269, 3.00963324380550823526572834362, 4.15816000723335585044553795505, 5.02522262844140395814578506502, 6.22924475067329073486711598694, 7.68234739127162575410322514300, 8.095944194541780680855303610191, 9.240701171692835591998690599415, 9.697774530240902187425587204845, 10.61797598792780120314623660474