Properties

Label 2-525-1.1-c1-0-6
Degree $2$
Conductor $525$
Sign $1$
Analytic cond. $4.19214$
Root an. cond. $2.04747$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.193·2-s + 3-s − 1.96·4-s − 0.193·6-s + 7-s + 0.768·8-s + 9-s + 2·11-s − 1.96·12-s − 1.35·13-s − 0.193·14-s + 3.77·16-s + 3.35·17-s − 0.193·18-s + 5.35·19-s + 21-s − 0.387·22-s − 4.96·23-s + 0.768·24-s + 0.261·26-s + 27-s − 1.96·28-s + 7.92·29-s + 4.57·31-s − 2.26·32-s + 2·33-s − 0.649·34-s + ⋯
L(s)  = 1  − 0.137·2-s + 0.577·3-s − 0.981·4-s − 0.0791·6-s + 0.377·7-s + 0.271·8-s + 0.333·9-s + 0.603·11-s − 0.566·12-s − 0.374·13-s − 0.0518·14-s + 0.943·16-s + 0.812·17-s − 0.0457·18-s + 1.22·19-s + 0.218·21-s − 0.0826·22-s − 1.03·23-s + 0.156·24-s + 0.0513·26-s + 0.192·27-s − 0.370·28-s + 1.47·29-s + 0.821·31-s − 0.401·32-s + 0.348·33-s − 0.111·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(525\)    =    \(3 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(4.19214\)
Root analytic conductor: \(2.04747\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 525,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.454583486\)
\(L(\frac12)\) \(\approx\) \(1.454583486\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
good2 \( 1 + 0.193T + 2T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 + 1.35T + 13T^{2} \)
17 \( 1 - 3.35T + 17T^{2} \)
19 \( 1 - 5.35T + 19T^{2} \)
23 \( 1 + 4.96T + 23T^{2} \)
29 \( 1 - 7.92T + 29T^{2} \)
31 \( 1 - 4.57T + 31T^{2} \)
37 \( 1 - 0.775T + 37T^{2} \)
41 \( 1 - 3.73T + 41T^{2} \)
43 \( 1 - 12.6T + 43T^{2} \)
47 \( 1 + 9.92T + 47T^{2} \)
53 \( 1 + 8.57T + 53T^{2} \)
59 \( 1 + 8.62T + 59T^{2} \)
61 \( 1 + 8.70T + 61T^{2} \)
67 \( 1 + 9.92T + 67T^{2} \)
71 \( 1 - 2T + 71T^{2} \)
73 \( 1 - 9.35T + 73T^{2} \)
79 \( 1 - 10.7T + 79T^{2} \)
83 \( 1 + 3.22T + 83T^{2} \)
89 \( 1 - 1.03T + 89T^{2} \)
97 \( 1 - 18.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.61797598792780120314623660474, −9.697774530240902187425587204845, −9.240701171692835591998690599415, −8.095944194541780680855303610191, −7.68234739127162575410322514300, −6.22924475067329073486711598694, −5.02522262844140395814578506502, −4.15816000723335585044553795505, −3.00963324380550823526572834362, −1.22392924948101114786523316269, 1.22392924948101114786523316269, 3.00963324380550823526572834362, 4.15816000723335585044553795505, 5.02522262844140395814578506502, 6.22924475067329073486711598694, 7.68234739127162575410322514300, 8.095944194541780680855303610191, 9.240701171692835591998690599415, 9.697774530240902187425587204845, 10.61797598792780120314623660474

Graph of the $Z$-function along the critical line