Properties

Label 2-525-1.1-c3-0-52
Degree $2$
Conductor $525$
Sign $-1$
Analytic cond. $30.9760$
Root an. cond. $5.56560$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 3·3-s + 4-s + 9·6-s − 7·7-s − 21·8-s + 9·9-s − 36·11-s + 3·12-s + 34·13-s − 21·14-s − 71·16-s − 42·17-s + 27·18-s − 124·19-s − 21·21-s − 108·22-s − 63·24-s + 102·26-s + 27·27-s − 7·28-s + 102·29-s − 160·31-s − 45·32-s − 108·33-s − 126·34-s + 9·36-s + ⋯
L(s)  = 1  + 1.06·2-s + 0.577·3-s + 1/8·4-s + 0.612·6-s − 0.377·7-s − 0.928·8-s + 1/3·9-s − 0.986·11-s + 0.0721·12-s + 0.725·13-s − 0.400·14-s − 1.10·16-s − 0.599·17-s + 0.353·18-s − 1.49·19-s − 0.218·21-s − 1.04·22-s − 0.535·24-s + 0.769·26-s + 0.192·27-s − 0.0472·28-s + 0.653·29-s − 0.926·31-s − 0.248·32-s − 0.569·33-s − 0.635·34-s + 1/24·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(525\)    =    \(3 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(30.9760\)
Root analytic conductor: \(5.56560\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 525,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p T \)
5 \( 1 \)
7 \( 1 + p T \)
good2 \( 1 - 3 T + p^{3} T^{2} \)
11 \( 1 + 36 T + p^{3} T^{2} \)
13 \( 1 - 34 T + p^{3} T^{2} \)
17 \( 1 + 42 T + p^{3} T^{2} \)
19 \( 1 + 124 T + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 - 102 T + p^{3} T^{2} \)
31 \( 1 + 160 T + p^{3} T^{2} \)
37 \( 1 + 398 T + p^{3} T^{2} \)
41 \( 1 + 318 T + p^{3} T^{2} \)
43 \( 1 - 268 T + p^{3} T^{2} \)
47 \( 1 + 240 T + p^{3} T^{2} \)
53 \( 1 - 498 T + p^{3} T^{2} \)
59 \( 1 + 132 T + p^{3} T^{2} \)
61 \( 1 - 398 T + p^{3} T^{2} \)
67 \( 1 + 92 T + p^{3} T^{2} \)
71 \( 1 + 720 T + p^{3} T^{2} \)
73 \( 1 - 502 T + p^{3} T^{2} \)
79 \( 1 + 1024 T + p^{3} T^{2} \)
83 \( 1 - 204 T + p^{3} T^{2} \)
89 \( 1 - 354 T + p^{3} T^{2} \)
97 \( 1 - 286 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.12075963038195753167479392371, −8.857664619071613451766903593028, −8.462808045494271645908698043295, −7.05934179263858124393768043409, −6.15591888066082578281245494934, −5.13942924283493950264659608217, −4.14241923520507025757724574463, −3.26655394703988871667371446388, −2.17378914361499586968822560904, 0, 2.17378914361499586968822560904, 3.26655394703988871667371446388, 4.14241923520507025757724574463, 5.13942924283493950264659608217, 6.15591888066082578281245494934, 7.05934179263858124393768043409, 8.462808045494271645908698043295, 8.857664619071613451766903593028, 10.12075963038195753167479392371

Graph of the $Z$-function along the critical line