L(s) = 1 | + (−0.965 + 0.258i)3-s + (−0.866 − 0.5i)4-s + (0.258 + 0.965i)7-s + (0.866 − 0.499i)9-s + (0.965 + 0.258i)12-s + (0.707 + 0.707i)13-s + (0.499 + 0.866i)16-s + (0.866 + 1.5i)19-s + (−0.499 − 0.866i)21-s + (−0.707 + 0.707i)27-s + (0.258 − 0.965i)28-s − 36-s + (0.448 − 1.67i)37-s + (−0.866 − 0.500i)39-s + (−0.707 − 0.707i)48-s + (−0.866 + 0.499i)49-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)3-s + (−0.866 − 0.5i)4-s + (0.258 + 0.965i)7-s + (0.866 − 0.499i)9-s + (0.965 + 0.258i)12-s + (0.707 + 0.707i)13-s + (0.499 + 0.866i)16-s + (0.866 + 1.5i)19-s + (−0.499 − 0.866i)21-s + (−0.707 + 0.707i)27-s + (0.258 − 0.965i)28-s − 36-s + (0.448 − 1.67i)37-s + (−0.866 − 0.500i)39-s + (−0.707 − 0.707i)48-s + (−0.866 + 0.499i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.710 - 0.703i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.710 - 0.703i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5735010221\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5735010221\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.965 - 0.258i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.258 - 0.965i)T \) |
good | 2 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 17 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 19 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.448 + 1.67i)T + (-0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (1.67 - 0.448i)T + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.965 + 0.258i)T + (0.866 - 0.5i)T^{2} \) |
| 79 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.16193192017319104432118326329, −10.30471748182133627122026676919, −9.438623159824397646965134463012, −8.806169123518105923750640424579, −7.61424063678983368829928099433, −6.11541754742608842168433919976, −5.71444109645330787947357036142, −4.71368681971134051877329674142, −3.72425329598832982644511654373, −1.55080816345337616069209461415,
0.957285847337279441362749789493, 3.28069687518321590505497826757, 4.50189451263717730946963683119, 5.14959005626572939246939861449, 6.41009233705777843818685920659, 7.42048689624225360458138026071, 8.092928672526680151973884199235, 9.277509282498893479671739447032, 10.20537933343363281521056356123, 11.01607537336673876195819766481