Properties

Label 2-525-105.17-c0-0-0
Degree 22
Conductor 525525
Sign 0.7100.703i0.710 - 0.703i
Analytic cond. 0.2620090.262009
Root an. cond. 0.5118680.511868
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.965 + 0.258i)3-s + (−0.866 − 0.5i)4-s + (0.258 + 0.965i)7-s + (0.866 − 0.499i)9-s + (0.965 + 0.258i)12-s + (0.707 + 0.707i)13-s + (0.499 + 0.866i)16-s + (0.866 + 1.5i)19-s + (−0.499 − 0.866i)21-s + (−0.707 + 0.707i)27-s + (0.258 − 0.965i)28-s − 36-s + (0.448 − 1.67i)37-s + (−0.866 − 0.500i)39-s + (−0.707 − 0.707i)48-s + (−0.866 + 0.499i)49-s + ⋯
L(s)  = 1  + (−0.965 + 0.258i)3-s + (−0.866 − 0.5i)4-s + (0.258 + 0.965i)7-s + (0.866 − 0.499i)9-s + (0.965 + 0.258i)12-s + (0.707 + 0.707i)13-s + (0.499 + 0.866i)16-s + (0.866 + 1.5i)19-s + (−0.499 − 0.866i)21-s + (−0.707 + 0.707i)27-s + (0.258 − 0.965i)28-s − 36-s + (0.448 − 1.67i)37-s + (−0.866 − 0.500i)39-s + (−0.707 − 0.707i)48-s + (−0.866 + 0.499i)49-s + ⋯

Functional equation

Λ(s)=(525s/2ΓC(s)L(s)=((0.7100.703i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.710 - 0.703i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(525s/2ΓC(s)L(s)=((0.7100.703i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.710 - 0.703i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 525525    =    35273 \cdot 5^{2} \cdot 7
Sign: 0.7100.703i0.710 - 0.703i
Analytic conductor: 0.2620090.262009
Root analytic conductor: 0.5118680.511868
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ525(332,)\chi_{525} (332, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 525, ( :0), 0.7100.703i)(2,\ 525,\ (\ :0),\ 0.710 - 0.703i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.57350102210.5735010221
L(12)L(\frac12) \approx 0.57350102210.5735010221
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(0.9650.258i)T 1 + (0.965 - 0.258i)T
5 1 1
7 1+(0.2580.965i)T 1 + (-0.258 - 0.965i)T
good2 1+(0.866+0.5i)T2 1 + (0.866 + 0.5i)T^{2}
11 1+(0.5+0.866i)T2 1 + (0.5 + 0.866i)T^{2}
13 1+(0.7070.707i)T+iT2 1 + (-0.707 - 0.707i)T + iT^{2}
17 1+(0.8660.5i)T2 1 + (0.866 - 0.5i)T^{2}
19 1+(0.8661.5i)T+(0.5+0.866i)T2 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2}
23 1+(0.8660.5i)T2 1 + (-0.866 - 0.5i)T^{2}
29 1+T2 1 + T^{2}
31 1+(0.5+0.866i)T2 1 + (0.5 + 0.866i)T^{2}
37 1+(0.448+1.67i)T+(0.8660.5i)T2 1 + (-0.448 + 1.67i)T + (-0.866 - 0.5i)T^{2}
41 1+T2 1 + T^{2}
43 1iT2 1 - iT^{2}
47 1+(0.8660.5i)T2 1 + (-0.866 - 0.5i)T^{2}
53 1+(0.8660.5i)T2 1 + (0.866 - 0.5i)T^{2}
59 1+(0.5+0.866i)T2 1 + (0.5 + 0.866i)T^{2}
61 1+(1.50.866i)T+(0.50.866i)T2 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2}
67 1+(1.670.448i)T+(0.8660.5i)T2 1 + (1.67 - 0.448i)T + (0.866 - 0.5i)T^{2}
71 1T2 1 - T^{2}
73 1+(0.965+0.258i)T+(0.8660.5i)T2 1 + (-0.965 + 0.258i)T + (0.866 - 0.5i)T^{2}
79 1+(0.866+0.5i)T+(0.50.866i)T2 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2}
83 1iT2 1 - iT^{2}
89 1+(0.50.866i)T2 1 + (0.5 - 0.866i)T^{2}
97 1+(0.707+0.707i)TiT2 1 + (-0.707 + 0.707i)T - iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.16193192017319104432118326329, −10.30471748182133627122026676919, −9.438623159824397646965134463012, −8.806169123518105923750640424579, −7.61424063678983368829928099433, −6.11541754742608842168433919976, −5.71444109645330787947357036142, −4.71368681971134051877329674142, −3.72425329598832982644511654373, −1.55080816345337616069209461415, 0.957285847337279441362749789493, 3.28069687518321590505497826757, 4.50189451263717730946963683119, 5.14959005626572939246939861449, 6.41009233705777843818685920659, 7.42048689624225360458138026071, 8.092928672526680151973884199235, 9.277509282498893479671739447032, 10.20537933343363281521056356123, 11.01607537336673876195819766481

Graph of the ZZ-function along the critical line