L(s) = 1 | + (−0.832 − 5.12i)3-s + 6.09i·5-s + 1.16i·7-s + (−25.6 + 8.54i)9-s + (30.4 − 20.0i)11-s + 37.5i·13-s + (31.2 − 5.07i)15-s − 40.8·17-s − 84.3i·19-s + (6 − 0.973i)21-s + 101. i·23-s + 87.7·25-s + (65.1 + 124. i)27-s + 251.·29-s − 19.9·31-s + ⋯ |
L(s) = 1 | + (−0.160 − 0.987i)3-s + 0.545i·5-s + 0.0631i·7-s + (−0.948 + 0.316i)9-s + (0.834 − 0.550i)11-s + 0.801i·13-s + (0.538 − 0.0874i)15-s − 0.583·17-s − 1.01i·19-s + (0.0623 − 0.0101i)21-s + 0.917i·23-s + 0.702·25-s + (0.464 + 0.885i)27-s + 1.61·29-s − 0.115·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.677 + 0.735i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 528 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.677 + 0.735i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.795303579\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.795303579\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.832 + 5.12i)T \) |
| 11 | \( 1 + (-30.4 + 20.0i)T \) |
good | 5 | \( 1 - 6.09iT - 125T^{2} \) |
| 7 | \( 1 - 1.16iT - 343T^{2} \) |
| 13 | \( 1 - 37.5iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 40.8T + 4.91e3T^{2} \) |
| 19 | \( 1 + 84.3iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 101. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 251.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 19.9T + 2.97e4T^{2} \) |
| 37 | \( 1 - 45.9T + 5.06e4T^{2} \) |
| 41 | \( 1 - 175.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 332. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 186. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 554. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 185. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 754. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 381.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 401. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 1.03e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.04e3iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 847.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 675. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 378.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57930007382042523473655961129, −9.170793628332851044220494348248, −8.624110542028990867652923282170, −7.35300044085221125961225324040, −6.72741743537265833318179175083, −6.01042737278408815456783264628, −4.68318645704223091928938680589, −3.25435489649875626818945989979, −2.12554722748825734783020924070, −0.77430074811755968283667402670,
0.922404366223222147684099599659, 2.73354495428806864837331714260, 4.05587411430549938981826959301, 4.72592521993938282703751828077, 5.79640267622573867040098299926, 6.76294970263568932509224677881, 8.197781752169603941239558676887, 8.816369777338215693822202499966, 9.790640729555926137096261835791, 10.40247421478263601357046913459