Properties

Label 528.4.b.d
Level 528528
Weight 44
Character orbit 528.b
Analytic conductor 31.15331.153
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [528,4,Mod(65,528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(528, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("528.65");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 528=24311 528 = 2^{4} \cdot 3 \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 528.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 31.153008483031.1530084830
Analytic rank: 00
Dimension: 66
Coefficient field: Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x521x4+114x3567x2729x+19683 x^{6} - x^{5} - 21x^{4} + 114x^{3} - 567x^{2} - 729x + 19683 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 223 2^{2}\cdot 3
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q3β5q5+(β5β3β2)q7+(β4β3+7)q9+(β5β4β3++2)q11+(4β3+5β2+β1)q13++(69β5+8β4+280)q99+O(q100) q - \beta_1 q^{3} - \beta_{5} q^{5} + ( - \beta_{5} - \beta_{3} - \beta_{2}) q^{7} + (\beta_{4} - \beta_{3} + 7) q^{9} + ( - \beta_{5} - \beta_{4} - \beta_{3} + \cdots + 2) q^{11} + (4 \beta_{3} + 5 \beta_{2} + \beta_1) q^{13}+ \cdots + ( - 69 \beta_{5} + 8 \beta_{4} + \cdots - 280) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6qq3+43q9+6q11+7q15+156q17+36q21204q25+278q27144q29+114q31+157q33588q3554q37+48q39408q41+551q45+606q49+1753q99+O(q100) 6 q - q^{3} + 43 q^{9} + 6 q^{11} + 7 q^{15} + 156 q^{17} + 36 q^{21} - 204 q^{25} + 278 q^{27} - 144 q^{29} + 114 q^{31} + 157 q^{33} - 588 q^{35} - 54 q^{37} + 48 q^{39} - 408 q^{41} + 551 q^{45} + 606 q^{49}+ \cdots - 1753 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x521x4+114x3567x2729x+19683 x^{6} - x^{5} - 21x^{4} + 114x^{3} - 567x^{2} - 729x + 19683 : Copy content Toggle raw display

β1\beta_{1}== (ν5+ν4+21ν3114ν2+567ν+729)/729 ( -\nu^{5} + \nu^{4} + 21\nu^{3} - 114\nu^{2} + 567\nu + 729 ) / 729 Copy content Toggle raw display
β2\beta_{2}== (7ν534ν4+123ν3+393ν27776ν+24057)/1458 ( 7\nu^{5} - 34\nu^{4} + 123\nu^{3} + 393\nu^{2} - 7776\nu + 24057 ) / 1458 Copy content Toggle raw display
β3\beta_{3}== (ν54ν4+9ν3+69ν2504ν+2511)/162 ( \nu^{5} - 4\nu^{4} + 9\nu^{3} + 69\nu^{2} - 504\nu + 2511 ) / 162 Copy content Toggle raw display
β4\beta_{4}== (7ν588ν4+177ν3+1527ν29558ν+44469)/1458 ( 7\nu^{5} - 88\nu^{4} + 177\nu^{3} + 1527\nu^{2} - 9558\nu + 44469 ) / 1458 Copy content Toggle raw display
β5\beta_{5}== (11ν592ν4+93ν3+525ν210368ν+51759)/1458 ( 11\nu^{5} - 92\nu^{4} + 93\nu^{3} + 525\nu^{2} - 10368\nu + 51759 ) / 1458 Copy content Toggle raw display
ν\nu== (β3β2+β1)/3 ( \beta_{3} - \beta_{2} + \beta_1 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (3β5+3β4+β3β25β1+21)/3 ( -3\beta_{5} + 3\beta_{4} + \beta_{3} - \beta_{2} - 5\beta _1 + 21 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (12β5+3β4+16β3+11β2+55β1150)/3 ( -12\beta_{5} + 3\beta_{4} + 16\beta_{3} + 11\beta_{2} + 55\beta _1 - 150 ) / 3 Copy content Toggle raw display
ν4\nu^{4}== (75β515β4+4β3+104β283β1+1425)/3 ( -75\beta_{5} - 15\beta_{4} + 4\beta_{3} + 104\beta_{2} - 83\beta _1 + 1425 ) / 3 Copy content Toggle raw display
ν5\nu^{5}== (15β5294β4+793β3118β2+22β11932)/3 ( 15\beta_{5} - 294\beta_{4} + 793\beta_{3} - 118\beta_{2} + 22\beta _1 - 1932 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/528Z)×\left(\mathbb{Z}/528\mathbb{Z}\right)^\times.

nn 133133 145145 353353 463463
χ(n)\chi(n) 11 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
65.1
4.85873 1.84194i
4.85873 + 1.84194i
0.832570 5.12902i
0.832570 + 5.12902i
−5.19130 0.224541i
−5.19130 + 0.224541i
0 −4.85873 1.84194i 0 16.6397i 0 3.25743i 0 20.2145 + 17.8990i 0
65.2 0 −4.85873 + 1.84194i 0 16.6397i 0 3.25743i 0 20.2145 17.8990i 0
65.3 0 −0.832570 5.12902i 0 6.09929i 0 1.16981i 0 −25.6137 + 8.54053i 0
65.4 0 −0.832570 + 5.12902i 0 6.09929i 0 1.16981i 0 −25.6137 8.54053i 0
65.5 0 5.19130 0.224541i 0 12.7640i 0 26.7212i 0 26.8992 2.33132i 0
65.6 0 5.19130 + 0.224541i 0 12.7640i 0 26.7212i 0 26.8992 + 2.33132i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 65.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
33.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 528.4.b.d 6
3.b odd 2 1 528.4.b.c 6
4.b odd 2 1 66.4.b.a 6
11.b odd 2 1 528.4.b.c 6
12.b even 2 1 66.4.b.b yes 6
33.d even 2 1 inner 528.4.b.d 6
44.c even 2 1 66.4.b.b yes 6
132.d odd 2 1 66.4.b.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.4.b.a 6 4.b odd 2 1
66.4.b.a 6 132.d odd 2 1
66.4.b.b yes 6 12.b even 2 1
66.4.b.b yes 6 44.c even 2 1
528.4.b.c 6 3.b odd 2 1
528.4.b.c 6 11.b odd 2 1
528.4.b.d 6 1.a even 1 1 trivial
528.4.b.d 6 33.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(528,[χ])S_{4}^{\mathrm{new}}(528, [\chi]):

T56+477T54+61470T52+1678112 T_{5}^{6} + 477T_{5}^{4} + 61470T_{5}^{2} + 1678112 Copy content Toggle raw display
T17378T1721608T17+133056 T_{17}^{3} - 78T_{17}^{2} - 1608T_{17} + 133056 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T6+T5++19683 T^{6} + T^{5} + \cdots + 19683 Copy content Toggle raw display
55 T6+477T4++1678112 T^{6} + 477 T^{4} + \cdots + 1678112 Copy content Toggle raw display
77 T6+726T4++10368 T^{6} + 726 T^{4} + \cdots + 10368 Copy content Toggle raw display
1111 T6++2357947691 T^{6} + \cdots + 2357947691 Copy content Toggle raw display
1313 T6++38459847168 T^{6} + \cdots + 38459847168 Copy content Toggle raw display
1717 (T378T2++133056)2 (T^{3} - 78 T^{2} + \cdots + 133056)^{2} Copy content Toggle raw display
1919 T6++184987680768 T^{6} + \cdots + 184987680768 Copy content Toggle raw display
2323 T6++68188290632 T^{6} + \cdots + 68188290632 Copy content Toggle raw display
2929 (T3+72T2+2511360)2 (T^{3} + 72 T^{2} + \cdots - 2511360)^{2} Copy content Toggle raw display
3131 (T357T2+722848)2 (T^{3} - 57 T^{2} + \cdots - 722848)^{2} Copy content Toggle raw display
3737 (T3+27T2++188452)2 (T^{3} + 27 T^{2} + \cdots + 188452)^{2} Copy content Toggle raw display
4141 (T3+204T2+4045104)2 (T^{3} + 204 T^{2} + \cdots - 4045104)^{2} Copy content Toggle raw display
4343 T6++338585981755392 T^{6} + \cdots + 338585981755392 Copy content Toggle raw display
4747 T6++27115367339552 T^{6} + \cdots + 27115367339552 Copy content Toggle raw display
5353 T6++52 ⁣ ⁣88 T^{6} + \cdots + 52\!\cdots\!88 Copy content Toggle raw display
5959 T6++2025875153408 T^{6} + \cdots + 2025875153408 Copy content Toggle raw display
6161 T6++38 ⁣ ⁣00 T^{6} + \cdots + 38\!\cdots\!00 Copy content Toggle raw display
6767 (T3+33T2++62825648)2 (T^{3} + 33 T^{2} + \cdots + 62825648)^{2} Copy content Toggle raw display
7171 T6++22 ⁣ ⁣00 T^{6} + \cdots + 22\!\cdots\!00 Copy content Toggle raw display
7373 T6++965647255339008 T^{6} + \cdots + 965647255339008 Copy content Toggle raw display
7979 T6++183824512639488 T^{6} + \cdots + 183824512639488 Copy content Toggle raw display
8383 (T3+696T2+455107968)2 (T^{3} + 696 T^{2} + \cdots - 455107968)^{2} Copy content Toggle raw display
8989 T6++54 ⁣ ⁣92 T^{6} + \cdots + 54\!\cdots\!92 Copy content Toggle raw display
9797 (T3627T2+9054752)2 (T^{3} - 627 T^{2} + \cdots - 9054752)^{2} Copy content Toggle raw display
show more
show less