Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [528,4,Mod(65,528)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(528, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("528.65");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 528.b (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 66) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
65.1 |
|
0 | −4.85873 | − | 1.84194i | 0 | − | 16.6397i | 0 | 3.25743i | 0 | 20.2145 | + | 17.8990i | 0 | |||||||||||||||||||||||||||||||
65.2 | 0 | −4.85873 | + | 1.84194i | 0 | 16.6397i | 0 | − | 3.25743i | 0 | 20.2145 | − | 17.8990i | 0 | ||||||||||||||||||||||||||||||||
65.3 | 0 | −0.832570 | − | 5.12902i | 0 | 6.09929i | 0 | 1.16981i | 0 | −25.6137 | + | 8.54053i | 0 | |||||||||||||||||||||||||||||||||
65.4 | 0 | −0.832570 | + | 5.12902i | 0 | − | 6.09929i | 0 | − | 1.16981i | 0 | −25.6137 | − | 8.54053i | 0 | |||||||||||||||||||||||||||||||
65.5 | 0 | 5.19130 | − | 0.224541i | 0 | 12.7640i | 0 | 26.7212i | 0 | 26.8992 | − | 2.33132i | 0 | |||||||||||||||||||||||||||||||||
65.6 | 0 | 5.19130 | + | 0.224541i | 0 | − | 12.7640i | 0 | − | 26.7212i | 0 | 26.8992 | + | 2.33132i | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
33.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 528.4.b.d | 6 | |
3.b | odd | 2 | 1 | 528.4.b.c | 6 | ||
4.b | odd | 2 | 1 | 66.4.b.a | ✓ | 6 | |
11.b | odd | 2 | 1 | 528.4.b.c | 6 | ||
12.b | even | 2 | 1 | 66.4.b.b | yes | 6 | |
33.d | even | 2 | 1 | inner | 528.4.b.d | 6 | |
44.c | even | 2 | 1 | 66.4.b.b | yes | 6 | |
132.d | odd | 2 | 1 | 66.4.b.a | ✓ | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
66.4.b.a | ✓ | 6 | 4.b | odd | 2 | 1 | |
66.4.b.a | ✓ | 6 | 132.d | odd | 2 | 1 | |
66.4.b.b | yes | 6 | 12.b | even | 2 | 1 | |
66.4.b.b | yes | 6 | 44.c | even | 2 | 1 | |
528.4.b.c | 6 | 3.b | odd | 2 | 1 | ||
528.4.b.c | 6 | 11.b | odd | 2 | 1 | ||
528.4.b.d | 6 | 1.a | even | 1 | 1 | trivial | |
528.4.b.d | 6 | 33.d | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|