L(s) = 1 | + (−0.832 − 5.12i)3-s + 6.09i·5-s + 1.16i·7-s + (−25.6 + 8.54i)9-s + (30.4 − 20.0i)11-s + 37.5i·13-s + (31.2 − 5.07i)15-s − 40.8·17-s − 84.3i·19-s + (6 − 0.973i)21-s + 101. i·23-s + 87.7·25-s + (65.1 + 124. i)27-s + 251.·29-s − 19.9·31-s + ⋯ |
L(s) = 1 | + (−0.160 − 0.987i)3-s + 0.545i·5-s + 0.0631i·7-s + (−0.948 + 0.316i)9-s + (0.834 − 0.550i)11-s + 0.801i·13-s + (0.538 − 0.0874i)15-s − 0.583·17-s − 1.01i·19-s + (0.0623 − 0.0101i)21-s + 0.917i·23-s + 0.702·25-s + (0.464 + 0.885i)27-s + 1.61·29-s − 0.115·31-s + ⋯ |
Λ(s)=(=(528s/2ΓC(s)L(s)(0.677+0.735i)Λ(4−s)
Λ(s)=(=(528s/2ΓC(s+3/2)L(s)(0.677+0.735i)Λ(1−s)
Degree: |
2 |
Conductor: |
528
= 24⋅3⋅11
|
Sign: |
0.677+0.735i
|
Analytic conductor: |
31.1530 |
Root analytic conductor: |
5.58148 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ528(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 528, ( :3/2), 0.677+0.735i)
|
Particular Values
L(2) |
≈ |
1.795303579 |
L(21) |
≈ |
1.795303579 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.832+5.12i)T |
| 11 | 1+(−30.4+20.0i)T |
good | 5 | 1−6.09iT−125T2 |
| 7 | 1−1.16iT−343T2 |
| 13 | 1−37.5iT−2.19e3T2 |
| 17 | 1+40.8T+4.91e3T2 |
| 19 | 1+84.3iT−6.85e3T2 |
| 23 | 1−101.iT−1.21e4T2 |
| 29 | 1−251.T+2.43e4T2 |
| 31 | 1+19.9T+2.97e4T2 |
| 37 | 1−45.9T+5.06e4T2 |
| 41 | 1−175.T+6.89e4T2 |
| 43 | 1+332.iT−7.95e4T2 |
| 47 | 1+186.iT−1.03e5T2 |
| 53 | 1−554.iT−1.48e5T2 |
| 59 | 1+185.iT−2.05e5T2 |
| 61 | 1+754.iT−2.26e5T2 |
| 67 | 1−381.T+3.00e5T2 |
| 71 | 1−401.iT−3.57e5T2 |
| 73 | 1+1.03e3iT−3.89e5T2 |
| 79 | 1+1.04e3iT−4.93e5T2 |
| 83 | 1+847.T+5.71e5T2 |
| 89 | 1+675.iT−7.04e5T2 |
| 97 | 1+378.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.57930007382042523473655961129, −9.170793628332851044220494348248, −8.624110542028990867652923282170, −7.35300044085221125961225324040, −6.72741743537265833318179175083, −6.01042737278408815456783264628, −4.68318645704223091928938680589, −3.25435489649875626818945989979, −2.12554722748825734783020924070, −0.77430074811755968283667402670,
0.922404366223222147684099599659, 2.73354495428806864837331714260, 4.05587411430549938981826959301, 4.72592521993938282703751828077, 5.79640267622573867040098299926, 6.76294970263568932509224677881, 8.197781752169603941239558676887, 8.816369777338215693822202499966, 9.790640729555926137096261835791, 10.40247421478263601357046913459