L(s) = 1 | + (0.438 + 2.48i)3-s + (−1.03 + 0.181i)5-s + (−2.55 − 0.670i)7-s + (−3.18 + 1.15i)9-s − 2.06·11-s + (−0.478 − 0.401i)13-s + (−0.905 − 2.48i)15-s + (−1.43 + 3.93i)17-s + (−3.76 + 2.19i)19-s + (0.544 − 6.66i)21-s + (−4.26 − 3.57i)23-s + (−3.66 + 1.33i)25-s + (−0.490 − 0.849i)27-s + (7.92 + 1.39i)29-s + (−0.252 − 0.437i)31-s + ⋯ |
L(s) = 1 | + (0.253 + 1.43i)3-s + (−0.461 + 0.0813i)5-s + (−0.967 − 0.253i)7-s + (−1.06 + 0.386i)9-s − 0.622·11-s + (−0.132 − 0.111i)13-s + (−0.233 − 0.642i)15-s + (−0.347 + 0.955i)17-s + (−0.864 + 0.503i)19-s + (0.118 − 1.45i)21-s + (−0.888 − 0.745i)23-s + (−0.733 + 0.266i)25-s + (−0.0944 − 0.163i)27-s + (1.47 + 0.259i)29-s + (−0.0453 − 0.0786i)31-s + ⋯ |
Λ(s)=(=(532s/2ΓC(s)L(s)(−0.969+0.244i)Λ(2−s)
Λ(s)=(=(532s/2ΓC(s+1/2)L(s)(−0.969+0.244i)Λ(1−s)
Degree: |
2 |
Conductor: |
532
= 22⋅7⋅19
|
Sign: |
−0.969+0.244i
|
Analytic conductor: |
4.24804 |
Root analytic conductor: |
2.06107 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ532(409,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 532, ( :1/2), −0.969+0.244i)
|
Particular Values
L(1) |
≈ |
0.0700646−0.565070i |
L(21) |
≈ |
0.0700646−0.565070i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(2.55+0.670i)T |
| 19 | 1+(3.76−2.19i)T |
good | 3 | 1+(−0.438−2.48i)T+(−2.81+1.02i)T2 |
| 5 | 1+(1.03−0.181i)T+(4.69−1.71i)T2 |
| 11 | 1+2.06T+11T2 |
| 13 | 1+(0.478+0.401i)T+(2.25+12.8i)T2 |
| 17 | 1+(1.43−3.93i)T+(−13.0−10.9i)T2 |
| 23 | 1+(4.26+3.57i)T+(3.99+22.6i)T2 |
| 29 | 1+(−7.92−1.39i)T+(27.2+9.91i)T2 |
| 31 | 1+(0.252+0.437i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−6.07+3.50i)T+(18.5−32.0i)T2 |
| 41 | 1+(−0.356+0.299i)T+(7.11−40.3i)T2 |
| 43 | 1+(8.38+3.05i)T+(32.9+27.6i)T2 |
| 47 | 1+(−0.662−1.82i)T+(−36.0+30.2i)T2 |
| 53 | 1+(0.276+0.0487i)T+(49.8+18.1i)T2 |
| 59 | 1+(−6.12−2.22i)T+(45.1+37.9i)T2 |
| 61 | 1+(7.44−8.87i)T+(−10.5−60.0i)T2 |
| 67 | 1+(3.76−4.49i)T+(−11.6−65.9i)T2 |
| 71 | 1+(3.35−9.22i)T+(−54.3−45.6i)T2 |
| 73 | 1+(−9.01+1.58i)T+(68.5−24.9i)T2 |
| 79 | 1+(4.23−11.6i)T+(−60.5−50.7i)T2 |
| 83 | 1+(−4.36−2.51i)T+(41.5+71.8i)T2 |
| 89 | 1+(2.04−11.6i)T+(−83.6−30.4i)T2 |
| 97 | 1+(−1.08−6.16i)T+(−91.1+33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.91450135807758058240406264881, −10.29637850464245872477426500278, −9.829074792895999453101983193431, −8.721436772052140842508576744793, −8.020599178216914503912041050177, −6.67631404759489516036609637744, −5.67572784670606821691637998282, −4.34016776057669541120221196094, −3.83283540440384591990145126415, −2.66227270777722281946690513437,
0.30033857921307907045958076959, 2.14902185596829589340890210706, 3.11989778218925495553673982889, 4.65428260525579214164233216974, 6.12070638785765771309062178785, 6.72466482896591569889367499955, 7.68159231831007945965504554850, 8.304914520066700042915913001468, 9.375217016277851354285332202965, 10.31311277940106164443683036223