L(s) = 1 | + (0.438 + 2.48i)3-s + (−1.03 + 0.181i)5-s + (−2.55 − 0.670i)7-s + (−3.18 + 1.15i)9-s − 2.06·11-s + (−0.478 − 0.401i)13-s + (−0.905 − 2.48i)15-s + (−1.43 + 3.93i)17-s + (−3.76 + 2.19i)19-s + (0.544 − 6.66i)21-s + (−4.26 − 3.57i)23-s + (−3.66 + 1.33i)25-s + (−0.490 − 0.849i)27-s + (7.92 + 1.39i)29-s + (−0.252 − 0.437i)31-s + ⋯ |
L(s) = 1 | + (0.253 + 1.43i)3-s + (−0.461 + 0.0813i)5-s + (−0.967 − 0.253i)7-s + (−1.06 + 0.386i)9-s − 0.622·11-s + (−0.132 − 0.111i)13-s + (−0.233 − 0.642i)15-s + (−0.347 + 0.955i)17-s + (−0.864 + 0.503i)19-s + (0.118 − 1.45i)21-s + (−0.888 − 0.745i)23-s + (−0.733 + 0.266i)25-s + (−0.0944 − 0.163i)27-s + (1.47 + 0.259i)29-s + (−0.0453 − 0.0786i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 532 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.969 + 0.244i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 532 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.969 + 0.244i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0700646 - 0.565070i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0700646 - 0.565070i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (2.55 + 0.670i)T \) |
| 19 | \( 1 + (3.76 - 2.19i)T \) |
good | 3 | \( 1 + (-0.438 - 2.48i)T + (-2.81 + 1.02i)T^{2} \) |
| 5 | \( 1 + (1.03 - 0.181i)T + (4.69 - 1.71i)T^{2} \) |
| 11 | \( 1 + 2.06T + 11T^{2} \) |
| 13 | \( 1 + (0.478 + 0.401i)T + (2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (1.43 - 3.93i)T + (-13.0 - 10.9i)T^{2} \) |
| 23 | \( 1 + (4.26 + 3.57i)T + (3.99 + 22.6i)T^{2} \) |
| 29 | \( 1 + (-7.92 - 1.39i)T + (27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (0.252 + 0.437i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-6.07 + 3.50i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.356 + 0.299i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (8.38 + 3.05i)T + (32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (-0.662 - 1.82i)T + (-36.0 + 30.2i)T^{2} \) |
| 53 | \( 1 + (0.276 + 0.0487i)T + (49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (-6.12 - 2.22i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (7.44 - 8.87i)T + (-10.5 - 60.0i)T^{2} \) |
| 67 | \( 1 + (3.76 - 4.49i)T + (-11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (3.35 - 9.22i)T + (-54.3 - 45.6i)T^{2} \) |
| 73 | \( 1 + (-9.01 + 1.58i)T + (68.5 - 24.9i)T^{2} \) |
| 79 | \( 1 + (4.23 - 11.6i)T + (-60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (-4.36 - 2.51i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (2.04 - 11.6i)T + (-83.6 - 30.4i)T^{2} \) |
| 97 | \( 1 + (-1.08 - 6.16i)T + (-91.1 + 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.91450135807758058240406264881, −10.29637850464245872477426500278, −9.829074792895999453101983193431, −8.721436772052140842508576744793, −8.020599178216914503912041050177, −6.67631404759489516036609637744, −5.67572784670606821691637998282, −4.34016776057669541120221196094, −3.83283540440384591990145126415, −2.66227270777722281946690513437,
0.30033857921307907045958076959, 2.14902185596829589340890210706, 3.11989778218925495553673982889, 4.65428260525579214164233216974, 6.12070638785765771309062178785, 6.72466482896591569889367499955, 7.68159231831007945965504554850, 8.304914520066700042915913001468, 9.375217016277851354285332202965, 10.31311277940106164443683036223