L(s) = 1 | + (0.438 − 2.48i)3-s + (−1.03 − 0.181i)5-s + (−2.55 + 0.670i)7-s + (−3.18 − 1.15i)9-s − 2.06·11-s + (−0.478 + 0.401i)13-s + (−0.905 + 2.48i)15-s + (−1.43 − 3.93i)17-s + (−3.76 − 2.19i)19-s + (0.544 + 6.66i)21-s + (−4.26 + 3.57i)23-s + (−3.66 − 1.33i)25-s + (−0.490 + 0.849i)27-s + (7.92 − 1.39i)29-s + (−0.252 + 0.437i)31-s + ⋯ |
L(s) = 1 | + (0.253 − 1.43i)3-s + (−0.461 − 0.0813i)5-s + (−0.967 + 0.253i)7-s + (−1.06 − 0.386i)9-s − 0.622·11-s + (−0.132 + 0.111i)13-s + (−0.233 + 0.642i)15-s + (−0.347 − 0.955i)17-s + (−0.864 − 0.503i)19-s + (0.118 + 1.45i)21-s + (−0.888 + 0.745i)23-s + (−0.733 − 0.266i)25-s + (−0.0944 + 0.163i)27-s + (1.47 − 0.259i)29-s + (−0.0453 + 0.0786i)31-s + ⋯ |
Λ(s)=(=(532s/2ΓC(s)L(s)(−0.969−0.244i)Λ(2−s)
Λ(s)=(=(532s/2ΓC(s+1/2)L(s)(−0.969−0.244i)Λ(1−s)
Degree: |
2 |
Conductor: |
532
= 22⋅7⋅19
|
Sign: |
−0.969−0.244i
|
Analytic conductor: |
4.24804 |
Root analytic conductor: |
2.06107 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ532(173,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 532, ( :1/2), −0.969−0.244i)
|
Particular Values
L(1) |
≈ |
0.0700646+0.565070i |
L(21) |
≈ |
0.0700646+0.565070i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(2.55−0.670i)T |
| 19 | 1+(3.76+2.19i)T |
good | 3 | 1+(−0.438+2.48i)T+(−2.81−1.02i)T2 |
| 5 | 1+(1.03+0.181i)T+(4.69+1.71i)T2 |
| 11 | 1+2.06T+11T2 |
| 13 | 1+(0.478−0.401i)T+(2.25−12.8i)T2 |
| 17 | 1+(1.43+3.93i)T+(−13.0+10.9i)T2 |
| 23 | 1+(4.26−3.57i)T+(3.99−22.6i)T2 |
| 29 | 1+(−7.92+1.39i)T+(27.2−9.91i)T2 |
| 31 | 1+(0.252−0.437i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−6.07−3.50i)T+(18.5+32.0i)T2 |
| 41 | 1+(−0.356−0.299i)T+(7.11+40.3i)T2 |
| 43 | 1+(8.38−3.05i)T+(32.9−27.6i)T2 |
| 47 | 1+(−0.662+1.82i)T+(−36.0−30.2i)T2 |
| 53 | 1+(0.276−0.0487i)T+(49.8−18.1i)T2 |
| 59 | 1+(−6.12+2.22i)T+(45.1−37.9i)T2 |
| 61 | 1+(7.44+8.87i)T+(−10.5+60.0i)T2 |
| 67 | 1+(3.76+4.49i)T+(−11.6+65.9i)T2 |
| 71 | 1+(3.35+9.22i)T+(−54.3+45.6i)T2 |
| 73 | 1+(−9.01−1.58i)T+(68.5+24.9i)T2 |
| 79 | 1+(4.23+11.6i)T+(−60.5+50.7i)T2 |
| 83 | 1+(−4.36+2.51i)T+(41.5−71.8i)T2 |
| 89 | 1+(2.04+11.6i)T+(−83.6+30.4i)T2 |
| 97 | 1+(−1.08+6.16i)T+(−91.1−33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31311277940106164443683036223, −9.375217016277851354285332202965, −8.304914520066700042915913001468, −7.68159231831007945965504554850, −6.72466482896591569889367499955, −6.12070638785765771309062178785, −4.65428260525579214164233216974, −3.11989778218925495553673982889, −2.14902185596829589340890210706, −0.30033857921307907045958076959,
2.66227270777722281946690513437, 3.83283540440384591990145126415, 4.34016776057669541120221196094, 5.67572784670606821691637998282, 6.67631404759489516036609637744, 8.020599178216914503912041050177, 8.721436772052140842508576744793, 9.829074792895999453101983193431, 10.29637850464245872477426500278, 10.91450135807758058240406264881