Properties

Label 532.2.cj.a.173.12
Level $532$
Weight $2$
Character 532.173
Analytic conductor $4.248$
Analytic rank $0$
Dimension $78$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [532,2,Mod(33,532)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(532, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 15, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("532.33");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 532 = 2^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 532.cj (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24804138753\)
Analytic rank: \(0\)
Dimension: \(78\)
Relative dimension: \(13\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 173.12
Character \(\chi\) \(=\) 532.173
Dual form 532.2.cj.a.409.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.438893 - 2.48909i) q^{3} +(-1.03151 - 0.181883i) q^{5} +(-2.55946 + 0.670193i) q^{7} +(-3.18386 - 1.15883i) q^{9} -2.06581 q^{11} +(-0.478089 + 0.401165i) q^{13} +(-0.905444 + 2.48769i) q^{15} +(-1.43338 - 3.93819i) q^{17} +(-3.76652 - 2.19394i) q^{19} +(0.544838 + 6.66487i) q^{21} +(-4.26093 + 3.57534i) q^{23} +(-3.66754 - 1.33487i) q^{25} +(-0.490573 + 0.849697i) q^{27} +(7.92909 - 1.39811i) q^{29} +(-0.252769 + 0.437809i) q^{31} +(-0.906671 + 5.14198i) q^{33} +(2.76200 - 0.225787i) q^{35} +(6.07450 + 3.50711i) q^{37} +(0.788704 + 1.36608i) q^{39} +(0.356481 + 0.299123i) q^{41} +(-8.38983 + 3.05365i) q^{43} +(3.07340 + 1.77443i) q^{45} +(0.662977 - 1.82152i) q^{47} +(6.10168 - 3.43066i) q^{49} +(-10.4316 + 1.83937i) q^{51} +(-0.276550 + 0.0487632i) q^{53} +(2.13090 + 0.375735i) q^{55} +(-7.11400 + 8.41229i) q^{57} +(6.12671 - 2.22994i) q^{59} +(-7.44630 - 8.87416i) q^{61} +(8.92560 + 0.832180i) q^{63} +(0.566118 - 0.326848i) q^{65} +(-3.76811 - 4.49065i) q^{67} +(7.02926 + 12.1750i) q^{69} +(-3.35917 - 9.22925i) q^{71} +(9.01173 + 1.58901i) q^{73} +(-4.93228 + 8.54296i) q^{75} +(5.28736 - 1.38449i) q^{77} +(-4.23127 - 11.6253i) q^{79} +(-5.88685 - 4.93965i) q^{81} +(4.36427 - 2.51971i) q^{83} +(0.762258 + 4.32298i) q^{85} -20.3498i q^{87} +(-2.04775 - 11.6134i) q^{89} +(0.954794 - 1.34718i) q^{91} +(0.978807 + 0.821317i) q^{93} +(3.48615 + 2.94813i) q^{95} +(1.08731 - 6.16646i) q^{97} +(6.57724 + 2.39392i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 78 q + 6 q^{7} - 6 q^{11} + 6 q^{13} - 3 q^{15} + 27 q^{17} + 21 q^{19} - 3 q^{21} - 24 q^{23} + 12 q^{27} - 18 q^{29} + 33 q^{35} + 36 q^{37} - 18 q^{39} - 18 q^{41} - 48 q^{43} - 18 q^{45} - 18 q^{49}+ \cdots + 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/532\mathbb{Z}\right)^\times\).

\(n\) \(267\) \(381\) \(477\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.438893 2.48909i 0.253395 1.43708i −0.546763 0.837287i \(-0.684140\pi\)
0.800158 0.599789i \(-0.204749\pi\)
\(4\) 0 0
\(5\) −1.03151 0.181883i −0.461304 0.0813404i −0.0618338 0.998086i \(-0.519695\pi\)
−0.399470 + 0.916746i \(0.630806\pi\)
\(6\) 0 0
\(7\) −2.55946 + 0.670193i −0.967385 + 0.253309i
\(8\) 0 0
\(9\) −3.18386 1.15883i −1.06129 0.386276i
\(10\) 0 0
\(11\) −2.06581 −0.622865 −0.311433 0.950268i \(-0.600809\pi\)
−0.311433 + 0.950268i \(0.600809\pi\)
\(12\) 0 0
\(13\) −0.478089 + 0.401165i −0.132598 + 0.111263i −0.706675 0.707539i \(-0.749806\pi\)
0.574077 + 0.818802i \(0.305361\pi\)
\(14\) 0 0
\(15\) −0.905444 + 2.48769i −0.233785 + 0.642318i
\(16\) 0 0
\(17\) −1.43338 3.93819i −0.347647 0.955152i −0.983109 0.183020i \(-0.941413\pi\)
0.635462 0.772132i \(-0.280809\pi\)
\(18\) 0 0
\(19\) −3.76652 2.19394i −0.864098 0.503324i
\(20\) 0 0
\(21\) 0.544838 + 6.66487i 0.118893 + 1.45439i
\(22\) 0 0
\(23\) −4.26093 + 3.57534i −0.888465 + 0.745511i −0.967902 0.251329i \(-0.919132\pi\)
0.0794364 + 0.996840i \(0.474688\pi\)
\(24\) 0 0
\(25\) −3.66754 1.33487i −0.733507 0.266975i
\(26\) 0 0
\(27\) −0.490573 + 0.849697i −0.0944108 + 0.163524i
\(28\) 0 0
\(29\) 7.92909 1.39811i 1.47240 0.259623i 0.620861 0.783921i \(-0.286783\pi\)
0.851535 + 0.524298i \(0.175672\pi\)
\(30\) 0 0
\(31\) −0.252769 + 0.437809i −0.0453987 + 0.0786329i −0.887832 0.460168i \(-0.847789\pi\)
0.842433 + 0.538801i \(0.181122\pi\)
\(32\) 0 0
\(33\) −0.906671 + 5.14198i −0.157831 + 0.895105i
\(34\) 0 0
\(35\) 2.76200 0.225787i 0.466863 0.0381651i
\(36\) 0 0
\(37\) 6.07450 + 3.50711i 0.998642 + 0.576566i 0.907846 0.419303i \(-0.137726\pi\)
0.0907956 + 0.995870i \(0.471059\pi\)
\(38\) 0 0
\(39\) 0.788704 + 1.36608i 0.126294 + 0.218747i
\(40\) 0 0
\(41\) 0.356481 + 0.299123i 0.0556730 + 0.0467152i 0.670200 0.742181i \(-0.266209\pi\)
−0.614527 + 0.788896i \(0.710653\pi\)
\(42\) 0 0
\(43\) −8.38983 + 3.05365i −1.27944 + 0.465677i −0.890246 0.455480i \(-0.849468\pi\)
−0.389191 + 0.921157i \(0.627245\pi\)
\(44\) 0 0
\(45\) 3.07340 + 1.77443i 0.458156 + 0.264516i
\(46\) 0 0
\(47\) 0.662977 1.82152i 0.0967052 0.265695i −0.881902 0.471433i \(-0.843737\pi\)
0.978607 + 0.205737i \(0.0659593\pi\)
\(48\) 0 0
\(49\) 6.10168 3.43066i 0.871669 0.490095i
\(50\) 0 0
\(51\) −10.4316 + 1.83937i −1.46072 + 0.257564i
\(52\) 0 0
\(53\) −0.276550 + 0.0487632i −0.0379871 + 0.00669815i −0.192609 0.981276i \(-0.561695\pi\)
0.154622 + 0.987974i \(0.450584\pi\)
\(54\) 0 0
\(55\) 2.13090 + 0.375735i 0.287330 + 0.0506641i
\(56\) 0 0
\(57\) −7.11400 + 8.41229i −0.942273 + 1.11423i
\(58\) 0 0
\(59\) 6.12671 2.22994i 0.797630 0.290313i 0.0891257 0.996020i \(-0.471593\pi\)
0.708504 + 0.705707i \(0.249370\pi\)
\(60\) 0 0
\(61\) −7.44630 8.87416i −0.953402 1.13622i −0.990583 0.136911i \(-0.956282\pi\)
0.0371817 0.999309i \(-0.488162\pi\)
\(62\) 0 0
\(63\) 8.92560 + 0.832180i 1.12452 + 0.104845i
\(64\) 0 0
\(65\) 0.566118 0.326848i 0.0702183 0.0405405i
\(66\) 0 0
\(67\) −3.76811 4.49065i −0.460347 0.548621i 0.485073 0.874474i \(-0.338793\pi\)
−0.945420 + 0.325853i \(0.894349\pi\)
\(68\) 0 0
\(69\) 7.02926 + 12.1750i 0.846223 + 1.46570i
\(70\) 0 0
\(71\) −3.35917 9.22925i −0.398661 1.09531i −0.962937 0.269725i \(-0.913067\pi\)
0.564277 0.825586i \(-0.309155\pi\)
\(72\) 0 0
\(73\) 9.01173 + 1.58901i 1.05474 + 0.185980i 0.674023 0.738711i \(-0.264565\pi\)
0.380720 + 0.924690i \(0.375676\pi\)
\(74\) 0 0
\(75\) −4.93228 + 8.54296i −0.569530 + 0.986455i
\(76\) 0 0
\(77\) 5.28736 1.38449i 0.602551 0.157777i
\(78\) 0 0
\(79\) −4.23127 11.6253i −0.476055 1.30795i −0.912816 0.408372i \(-0.866097\pi\)
0.436761 0.899578i \(-0.356126\pi\)
\(80\) 0 0
\(81\) −5.88685 4.93965i −0.654095 0.548850i
\(82\) 0 0
\(83\) 4.36427 2.51971i 0.479041 0.276574i −0.240976 0.970531i \(-0.577468\pi\)
0.720017 + 0.693957i \(0.244134\pi\)
\(84\) 0 0
\(85\) 0.762258 + 4.32298i 0.0826785 + 0.468893i
\(86\) 0 0
\(87\) 20.3498i 2.18173i
\(88\) 0 0
\(89\) −2.04775 11.6134i −0.217061 1.23101i −0.877294 0.479953i \(-0.840654\pi\)
0.660234 0.751060i \(-0.270457\pi\)
\(90\) 0 0
\(91\) 0.954794 1.34718i 0.100090 0.141223i
\(92\) 0 0
\(93\) 0.978807 + 0.821317i 0.101498 + 0.0851666i
\(94\) 0 0
\(95\) 3.48615 + 2.94813i 0.357672 + 0.302471i
\(96\) 0 0
\(97\) 1.08731 6.16646i 0.110400 0.626109i −0.878525 0.477696i \(-0.841472\pi\)
0.988925 0.148414i \(-0.0474167\pi\)
\(98\) 0 0
\(99\) 6.57724 + 2.39392i 0.661038 + 0.240598i
\(100\) 0 0
\(101\) 0.920264 2.52841i 0.0915697 0.251586i −0.885450 0.464735i \(-0.846150\pi\)
0.977020 + 0.213149i \(0.0683719\pi\)
\(102\) 0 0
\(103\) 0.283136 + 0.490407i 0.0278983 + 0.0483212i 0.879637 0.475645i \(-0.157785\pi\)
−0.851739 + 0.523966i \(0.824452\pi\)
\(104\) 0 0
\(105\) 0.650219 6.97396i 0.0634549 0.680589i
\(106\) 0 0
\(107\) 8.20371i 0.793082i 0.918017 + 0.396541i \(0.129790\pi\)
−0.918017 + 0.396541i \(0.870210\pi\)
\(108\) 0 0
\(109\) −4.40789 + 5.25312i −0.422200 + 0.503158i −0.934655 0.355556i \(-0.884292\pi\)
0.512455 + 0.858714i \(0.328736\pi\)
\(110\) 0 0
\(111\) 11.3956 13.5807i 1.08162 1.28903i
\(112\) 0 0
\(113\) 15.1147i 1.42187i 0.703258 + 0.710934i \(0.251728\pi\)
−0.703258 + 0.710934i \(0.748272\pi\)
\(114\) 0 0
\(115\) 5.04548 2.91301i 0.470493 0.271639i
\(116\) 0 0
\(117\) 1.98705 0.723227i 0.183703 0.0668624i
\(118\) 0 0
\(119\) 6.30804 + 9.11900i 0.578257 + 0.835938i
\(120\) 0 0
\(121\) −6.73243 −0.612039
\(122\) 0 0
\(123\) 0.901001 0.756029i 0.0812405 0.0681689i
\(124\) 0 0
\(125\) 8.07577 + 4.66255i 0.722318 + 0.417031i
\(126\) 0 0
\(127\) −5.91538 7.04967i −0.524905 0.625557i 0.436828 0.899545i \(-0.356102\pi\)
−0.961733 + 0.273988i \(0.911657\pi\)
\(128\) 0 0
\(129\) 3.91856 + 22.2232i 0.345010 + 1.95665i
\(130\) 0 0
\(131\) 3.84891 4.58695i 0.336281 0.400764i −0.571232 0.820789i \(-0.693534\pi\)
0.907513 + 0.420025i \(0.137979\pi\)
\(132\) 0 0
\(133\) 11.1106 + 3.09101i 0.963412 + 0.268024i
\(134\) 0 0
\(135\) 0.660575 0.787242i 0.0568532 0.0677550i
\(136\) 0 0
\(137\) −0.521893 2.95980i −0.0445883 0.252873i 0.954363 0.298647i \(-0.0965355\pi\)
−0.998952 + 0.0457747i \(0.985424\pi\)
\(138\) 0 0
\(139\) −2.27306 2.70893i −0.192799 0.229768i 0.660982 0.750402i \(-0.270140\pi\)
−0.853780 + 0.520634i \(0.825696\pi\)
\(140\) 0 0
\(141\) −4.24294 2.44966i −0.357320 0.206299i
\(142\) 0 0
\(143\) 0.987642 0.828730i 0.0825908 0.0693019i
\(144\) 0 0
\(145\) −8.43321 −0.700340
\(146\) 0 0
\(147\) −5.86124 16.6933i −0.483427 1.37684i
\(148\) 0 0
\(149\) 17.2125 6.26484i 1.41010 0.513235i 0.478943 0.877846i \(-0.341020\pi\)
0.931160 + 0.364611i \(0.118798\pi\)
\(150\) 0 0
\(151\) 8.62673 4.98064i 0.702033 0.405319i −0.106071 0.994359i \(-0.533827\pi\)
0.808104 + 0.589040i \(0.200494\pi\)
\(152\) 0 0
\(153\) 14.1997i 1.14798i
\(154\) 0 0
\(155\) 0.340363 0.405629i 0.0273386 0.0325809i
\(156\) 0 0
\(157\) −12.4810 + 14.8743i −0.996094 + 1.18710i −0.0137713 + 0.999905i \(0.504384\pi\)
−0.982323 + 0.187194i \(0.940061\pi\)
\(158\) 0 0
\(159\) 0.709759i 0.0562876i
\(160\) 0 0
\(161\) 8.50952 12.0066i 0.670644 0.946253i
\(162\) 0 0
\(163\) −1.90963 3.30758i −0.149574 0.259070i 0.781496 0.623910i \(-0.214457\pi\)
−0.931070 + 0.364840i \(0.881124\pi\)
\(164\) 0 0
\(165\) 1.87048 5.13909i 0.145616 0.400078i
\(166\) 0 0
\(167\) 19.0311 + 6.92674i 1.47267 + 0.536007i 0.948823 0.315807i \(-0.102275\pi\)
0.523844 + 0.851814i \(0.324497\pi\)
\(168\) 0 0
\(169\) −2.18979 + 12.4189i −0.168445 + 0.955301i
\(170\) 0 0
\(171\) 9.44965 + 11.3499i 0.722633 + 0.867951i
\(172\) 0 0
\(173\) 5.90128 + 4.95176i 0.448666 + 0.376476i 0.838941 0.544223i \(-0.183175\pi\)
−0.390274 + 0.920699i \(0.627620\pi\)
\(174\) 0 0
\(175\) 10.2815 + 0.958602i 0.777211 + 0.0724635i
\(176\) 0 0
\(177\) −2.86154 16.2286i −0.215087 1.21982i
\(178\) 0 0
\(179\) 16.3073i 1.21887i 0.792838 + 0.609433i \(0.208603\pi\)
−0.792838 + 0.609433i \(0.791397\pi\)
\(180\) 0 0
\(181\) 2.48116 + 14.0714i 0.184423 + 1.04592i 0.926694 + 0.375817i \(0.122638\pi\)
−0.742271 + 0.670100i \(0.766251\pi\)
\(182\) 0 0
\(183\) −25.3567 + 14.6397i −1.87442 + 1.08220i
\(184\) 0 0
\(185\) −5.62801 4.72246i −0.413780 0.347202i
\(186\) 0 0
\(187\) 2.96110 + 8.13555i 0.216537 + 0.594931i
\(188\) 0 0
\(189\) 0.686141 2.50354i 0.0499094 0.182106i
\(190\) 0 0
\(191\) 7.46171 12.9241i 0.539910 0.935152i −0.458998 0.888437i \(-0.651792\pi\)
0.998908 0.0467145i \(-0.0148751\pi\)
\(192\) 0 0
\(193\) −14.8844 2.62452i −1.07140 0.188917i −0.389992 0.920818i \(-0.627522\pi\)
−0.681411 + 0.731901i \(0.738633\pi\)
\(194\) 0 0
\(195\) −0.565089 1.55257i −0.0404669 0.111182i
\(196\) 0 0
\(197\) 5.94325 + 10.2940i 0.423439 + 0.733418i 0.996273 0.0862535i \(-0.0274895\pi\)
−0.572834 + 0.819671i \(0.694156\pi\)
\(198\) 0 0
\(199\) −11.3910 13.5753i −0.807489 0.962329i 0.192330 0.981330i \(-0.438396\pi\)
−0.999819 + 0.0190018i \(0.993951\pi\)
\(200\) 0 0
\(201\) −12.8314 + 7.40823i −0.905060 + 0.522536i
\(202\) 0 0
\(203\) −19.3572 + 8.89244i −1.35861 + 0.624127i
\(204\) 0 0
\(205\) −0.313308 0.373385i −0.0218823 0.0260784i
\(206\) 0 0
\(207\) 17.7094 6.44570i 1.23089 0.448007i
\(208\) 0 0
\(209\) 7.78091 + 4.53226i 0.538217 + 0.313503i
\(210\) 0 0
\(211\) −5.35540 0.944301i −0.368681 0.0650084i −0.0137615 0.999905i \(-0.504381\pi\)
−0.354919 + 0.934897i \(0.615492\pi\)
\(212\) 0 0
\(213\) −24.4468 + 4.31062i −1.67506 + 0.295359i
\(214\) 0 0
\(215\) 9.20958 1.62390i 0.628088 0.110749i
\(216\) 0 0
\(217\) 0.353537 1.28996i 0.0239996 0.0875682i
\(218\) 0 0
\(219\) 7.91038 21.7336i 0.534534 1.46862i
\(220\) 0 0
\(221\) 2.26515 + 1.30778i 0.152370 + 0.0879711i
\(222\) 0 0
\(223\) 4.20981 1.53225i 0.281910 0.102607i −0.197195 0.980364i \(-0.563183\pi\)
0.479105 + 0.877757i \(0.340961\pi\)
\(224\) 0 0
\(225\) 10.1300 + 8.50010i 0.675335 + 0.566673i
\(226\) 0 0
\(227\) −7.65938 13.2664i −0.508371 0.880524i −0.999953 0.00969273i \(-0.996915\pi\)
0.491582 0.870831i \(-0.336419\pi\)
\(228\) 0 0
\(229\) 18.9999 + 10.9696i 1.25555 + 0.724889i 0.972205 0.234130i \(-0.0752241\pi\)
0.283340 + 0.959019i \(0.408557\pi\)
\(230\) 0 0
\(231\) −1.12553 13.7684i −0.0740546 0.905891i
\(232\) 0 0
\(233\) 4.52413 25.6576i 0.296386 1.68089i −0.365132 0.930956i \(-0.618976\pi\)
0.661517 0.749930i \(-0.269913\pi\)
\(234\) 0 0
\(235\) −1.01517 + 1.75832i −0.0662223 + 0.114700i
\(236\) 0 0
\(237\) −30.7935 + 5.42973i −2.00025 + 0.352699i
\(238\) 0 0
\(239\) −3.58100 + 6.20247i −0.231635 + 0.401204i −0.958290 0.285799i \(-0.907741\pi\)
0.726654 + 0.687003i \(0.241074\pi\)
\(240\) 0 0
\(241\) −23.9346 8.71148i −1.54176 0.561156i −0.575296 0.817946i \(-0.695113\pi\)
−0.966467 + 0.256790i \(0.917335\pi\)
\(242\) 0 0
\(243\) −17.1337 + 14.3769i −1.09913 + 0.922280i
\(244\) 0 0
\(245\) −6.91791 + 2.42897i −0.441969 + 0.155181i
\(246\) 0 0
\(247\) 2.68086 0.462095i 0.170579 0.0294024i
\(248\) 0 0
\(249\) −4.35634 11.9689i −0.276072 0.758500i
\(250\) 0 0
\(251\) −9.01699 + 24.7740i −0.569147 + 1.56372i 0.236692 + 0.971585i \(0.423937\pi\)
−0.805839 + 0.592134i \(0.798285\pi\)
\(252\) 0 0
\(253\) 8.80227 7.38598i 0.553394 0.464353i
\(254\) 0 0
\(255\) 11.0948 0.694786
\(256\) 0 0
\(257\) 7.45765 + 2.71436i 0.465195 + 0.169317i 0.563975 0.825792i \(-0.309272\pi\)
−0.0987794 + 0.995109i \(0.531494\pi\)
\(258\) 0 0
\(259\) −17.8979 4.90524i −1.11212 0.304797i
\(260\) 0 0
\(261\) −26.8653 4.73707i −1.66292 0.293217i
\(262\) 0 0
\(263\) −4.47241 + 25.3643i −0.275781 + 1.56403i 0.460691 + 0.887561i \(0.347602\pi\)
−0.736471 + 0.676469i \(0.763509\pi\)
\(264\) 0 0
\(265\) 0.294133 0.0180684
\(266\) 0 0
\(267\) −29.8054 −1.82406
\(268\) 0 0
\(269\) 1.73604 9.84557i 0.105848 0.600295i −0.885030 0.465534i \(-0.845862\pi\)
0.990878 0.134761i \(-0.0430266\pi\)
\(270\) 0 0
\(271\) 18.0444 + 3.18171i 1.09612 + 0.193275i 0.692333 0.721578i \(-0.256583\pi\)
0.403786 + 0.914853i \(0.367694\pi\)
\(272\) 0 0
\(273\) −2.93419 2.96783i −0.177585 0.179621i
\(274\) 0 0
\(275\) 7.57643 + 2.75760i 0.456876 + 0.166289i
\(276\) 0 0
\(277\) −15.4531 −0.928489 −0.464244 0.885707i \(-0.653674\pi\)
−0.464244 + 0.885707i \(0.653674\pi\)
\(278\) 0 0
\(279\) 1.31213 1.10101i 0.0785550 0.0659155i
\(280\) 0 0
\(281\) 10.9992 30.2201i 0.656159 1.80278i 0.0625299 0.998043i \(-0.480083\pi\)
0.593629 0.804739i \(-0.297695\pi\)
\(282\) 0 0
\(283\) 1.00678 + 2.76610i 0.0598468 + 0.164428i 0.966013 0.258495i \(-0.0832265\pi\)
−0.906166 + 0.422922i \(0.861004\pi\)
\(284\) 0 0
\(285\) 8.86820 7.38343i 0.525307 0.437356i
\(286\) 0 0
\(287\) −1.11287 0.526683i −0.0656906 0.0310891i
\(288\) 0 0
\(289\) −0.432003 + 0.362493i −0.0254119 + 0.0213231i
\(290\) 0 0
\(291\) −14.8717 5.41284i −0.871792 0.317306i
\(292\) 0 0
\(293\) −0.297931 + 0.516031i −0.0174053 + 0.0301468i −0.874597 0.484851i \(-0.838874\pi\)
0.857192 + 0.514998i \(0.172207\pi\)
\(294\) 0 0
\(295\) −6.72533 + 1.18586i −0.391564 + 0.0690433i
\(296\) 0 0
\(297\) 1.01343 1.75531i 0.0588052 0.101854i
\(298\) 0 0
\(299\) 0.602804 3.41867i 0.0348610 0.197707i
\(300\) 0 0
\(301\) 19.4269 13.4385i 1.11975 0.774582i
\(302\) 0 0
\(303\) −5.88953 3.40032i −0.338345 0.195343i
\(304\) 0 0
\(305\) 6.06687 + 10.5081i 0.347388 + 0.601693i
\(306\) 0 0
\(307\) −11.8485 9.94208i −0.676230 0.567425i 0.238672 0.971100i \(-0.423288\pi\)
−0.914902 + 0.403676i \(0.867732\pi\)
\(308\) 0 0
\(309\) 1.34493 0.489516i 0.0765106 0.0278476i
\(310\) 0 0
\(311\) −18.4345 10.6431i −1.04532 0.603518i −0.123987 0.992284i \(-0.539568\pi\)
−0.921336 + 0.388766i \(0.872901\pi\)
\(312\) 0 0
\(313\) 4.31080 11.8438i 0.243661 0.669452i −0.756225 0.654312i \(-0.772958\pi\)
0.999885 0.0151400i \(-0.00481940\pi\)
\(314\) 0 0
\(315\) −9.05546 2.48181i −0.510218 0.139834i
\(316\) 0 0
\(317\) −21.4507 + 3.78233i −1.20479 + 0.212437i −0.739768 0.672863i \(-0.765065\pi\)
−0.465022 + 0.885299i \(0.653953\pi\)
\(318\) 0 0
\(319\) −16.3800 + 2.88824i −0.917104 + 0.161710i
\(320\) 0 0
\(321\) 20.4198 + 3.60055i 1.13972 + 0.200963i
\(322\) 0 0
\(323\) −3.24128 + 17.9780i −0.180350 + 1.00032i
\(324\) 0 0
\(325\) 2.28891 0.833097i 0.126966 0.0462119i
\(326\) 0 0
\(327\) 11.1409 + 13.2772i 0.616093 + 0.734231i
\(328\) 0 0
\(329\) −0.476098 + 5.10642i −0.0262482 + 0.281526i
\(330\) 0 0
\(331\) −18.0565 + 10.4249i −0.992476 + 0.573006i −0.906013 0.423249i \(-0.860890\pi\)
−0.0864622 + 0.996255i \(0.527556\pi\)
\(332\) 0 0
\(333\) −15.2762 18.2055i −0.837130 0.997653i
\(334\) 0 0
\(335\) 3.07006 + 5.31750i 0.167735 + 0.290526i
\(336\) 0 0
\(337\) 2.72493 + 7.48668i 0.148436 + 0.407825i 0.991520 0.129958i \(-0.0414842\pi\)
−0.843083 + 0.537783i \(0.819262\pi\)
\(338\) 0 0
\(339\) 37.6218 + 6.63373i 2.04333 + 0.360295i
\(340\) 0 0
\(341\) 0.522173 0.904431i 0.0282773 0.0489777i
\(342\) 0 0
\(343\) −13.3178 + 12.8700i −0.719094 + 0.694912i
\(344\) 0 0
\(345\) −5.03631 13.8371i −0.271146 0.744966i
\(346\) 0 0
\(347\) 5.96923 + 5.00878i 0.320445 + 0.268885i 0.788793 0.614659i \(-0.210706\pi\)
−0.468348 + 0.883544i \(0.655151\pi\)
\(348\) 0 0
\(349\) 3.31556 1.91424i 0.177478 0.102467i −0.408629 0.912700i \(-0.633993\pi\)
0.586107 + 0.810234i \(0.300660\pi\)
\(350\) 0 0
\(351\) −0.106331 0.603032i −0.00567551 0.0321874i
\(352\) 0 0
\(353\) 19.7968i 1.05368i 0.849966 + 0.526838i \(0.176623\pi\)
−0.849966 + 0.526838i \(0.823377\pi\)
\(354\) 0 0
\(355\) 1.78637 + 10.1310i 0.0948108 + 0.537699i
\(356\) 0 0
\(357\) 25.4666 11.6990i 1.34783 0.619177i
\(358\) 0 0
\(359\) 14.2861 + 11.9875i 0.753992 + 0.632675i 0.936555 0.350519i \(-0.113995\pi\)
−0.182563 + 0.983194i \(0.558439\pi\)
\(360\) 0 0
\(361\) 9.37328 + 16.5270i 0.493331 + 0.869842i
\(362\) 0 0
\(363\) −2.95482 + 16.7576i −0.155088 + 0.879547i
\(364\) 0 0
\(365\) −9.00665 3.27815i −0.471430 0.171586i
\(366\) 0 0
\(367\) −5.32417 + 14.6280i −0.277920 + 0.763578i 0.719678 + 0.694308i \(0.244289\pi\)
−0.997598 + 0.0692701i \(0.977933\pi\)
\(368\) 0 0
\(369\) −0.788352 1.36547i −0.0410400 0.0710833i
\(370\) 0 0
\(371\) 0.675138 0.310149i 0.0350514 0.0161022i
\(372\) 0 0
\(373\) 6.33241i 0.327880i 0.986470 + 0.163940i \(0.0524203\pi\)
−0.986470 + 0.163940i \(0.947580\pi\)
\(374\) 0 0
\(375\) 15.1499 18.0549i 0.782337 0.932353i
\(376\) 0 0
\(377\) −3.22994 + 3.84930i −0.166350 + 0.198249i
\(378\) 0 0
\(379\) 18.3782i 0.944025i 0.881592 + 0.472012i \(0.156472\pi\)
−0.881592 + 0.472012i \(0.843528\pi\)
\(380\) 0 0
\(381\) −20.1435 + 11.6298i −1.03198 + 0.595815i
\(382\) 0 0
\(383\) 7.86029 2.86091i 0.401642 0.146186i −0.133298 0.991076i \(-0.542557\pi\)
0.534939 + 0.844890i \(0.320334\pi\)
\(384\) 0 0
\(385\) −5.70577 + 0.466434i −0.290793 + 0.0237717i
\(386\) 0 0
\(387\) 30.2507 1.53773
\(388\) 0 0
\(389\) 5.96281 5.00339i 0.302327 0.253682i −0.478985 0.877823i \(-0.658995\pi\)
0.781312 + 0.624141i \(0.214551\pi\)
\(390\) 0 0
\(391\) 20.1879 + 11.6555i 1.02095 + 0.589445i
\(392\) 0 0
\(393\) −9.72807 11.5935i −0.490716 0.584813i
\(394\) 0 0
\(395\) 2.25014 + 12.7612i 0.113217 + 0.642085i
\(396\) 0 0
\(397\) −7.06339 + 8.41781i −0.354501 + 0.422478i −0.913594 0.406627i \(-0.866705\pi\)
0.559093 + 0.829105i \(0.311149\pi\)
\(398\) 0 0
\(399\) 12.5702 26.2987i 0.629295 1.31658i
\(400\) 0 0
\(401\) 11.3389 13.5131i 0.566236 0.674814i −0.404618 0.914486i \(-0.632595\pi\)
0.970854 + 0.239672i \(0.0770398\pi\)
\(402\) 0 0
\(403\) −0.0547873 0.310714i −0.00272915 0.0154778i
\(404\) 0 0
\(405\) 5.17390 + 6.16601i 0.257093 + 0.306391i
\(406\) 0 0
\(407\) −12.5488 7.24503i −0.622019 0.359123i
\(408\) 0 0
\(409\) 19.9303 16.7235i 0.985492 0.826926i 0.000583372 1.00000i \(-0.499814\pi\)
0.984909 + 0.173074i \(0.0553699\pi\)
\(410\) 0 0
\(411\) −7.59626 −0.374696
\(412\) 0 0
\(413\) −14.1866 + 9.81352i −0.698076 + 0.482892i
\(414\) 0 0
\(415\) −4.96007 + 1.80532i −0.243480 + 0.0886195i
\(416\) 0 0
\(417\) −7.74040 + 4.46892i −0.379049 + 0.218844i
\(418\) 0 0
\(419\) 9.89085i 0.483200i −0.970376 0.241600i \(-0.922328\pi\)
0.970376 0.241600i \(-0.0776721\pi\)
\(420\) 0 0
\(421\) 18.5287 22.0816i 0.903033 1.07619i −0.0937135 0.995599i \(-0.529874\pi\)
0.996747 0.0805942i \(-0.0256818\pi\)
\(422\) 0 0
\(423\) −4.22165 + 5.03117i −0.205264 + 0.244624i
\(424\) 0 0
\(425\) 16.3568i 0.793424i
\(426\) 0 0
\(427\) 25.0059 + 17.7226i 1.21012 + 0.857657i
\(428\) 0 0
\(429\) −1.62931 2.82205i −0.0786640 0.136250i
\(430\) 0 0
\(431\) −9.96358 + 27.3747i −0.479929 + 1.31859i 0.429625 + 0.903007i \(0.358646\pi\)
−0.909554 + 0.415586i \(0.863577\pi\)
\(432\) 0 0
\(433\) 8.88191 + 3.23275i 0.426838 + 0.155356i 0.546501 0.837458i \(-0.315959\pi\)
−0.119664 + 0.992814i \(0.538182\pi\)
\(434\) 0 0
\(435\) −3.70128 + 20.9910i −0.177463 + 1.00644i
\(436\) 0 0
\(437\) 23.8929 4.11838i 1.14295 0.197009i
\(438\) 0 0
\(439\) −23.0781 19.3648i −1.10146 0.924232i −0.103934 0.994584i \(-0.533143\pi\)
−0.997522 + 0.0703526i \(0.977588\pi\)
\(440\) 0 0
\(441\) −23.4024 + 3.85194i −1.11440 + 0.183426i
\(442\) 0 0
\(443\) −0.0551901 0.312998i −0.00262216 0.0148710i 0.983469 0.181079i \(-0.0579589\pi\)
−0.986091 + 0.166208i \(0.946848\pi\)
\(444\) 0 0
\(445\) 12.3517i 0.585527i
\(446\) 0 0
\(447\) −8.03928 45.5930i −0.380245 2.15648i
\(448\) 0 0
\(449\) 32.9104 19.0008i 1.55314 0.896705i 0.555256 0.831680i \(-0.312620\pi\)
0.997884 0.0650256i \(-0.0207129\pi\)
\(450\) 0 0
\(451\) −0.736422 0.617931i −0.0346767 0.0290972i
\(452\) 0 0
\(453\) −8.61105 23.6587i −0.404582 1.11158i
\(454\) 0 0
\(455\) −1.22991 + 1.21596i −0.0576588 + 0.0570053i
\(456\) 0 0
\(457\) −10.7924 + 18.6930i −0.504848 + 0.874423i 0.495136 + 0.868816i \(0.335118\pi\)
−0.999984 + 0.00560743i \(0.998215\pi\)
\(458\) 0 0
\(459\) 4.04945 + 0.714027i 0.189012 + 0.0333279i
\(460\) 0 0
\(461\) −10.3049 28.3125i −0.479948 1.31865i −0.909537 0.415622i \(-0.863564\pi\)
0.429589 0.903024i \(-0.358658\pi\)
\(462\) 0 0
\(463\) 3.44849 + 5.97296i 0.160265 + 0.277587i 0.934964 0.354744i \(-0.115432\pi\)
−0.774699 + 0.632330i \(0.782098\pi\)
\(464\) 0 0
\(465\) −0.860264 1.02522i −0.0398938 0.0475436i
\(466\) 0 0
\(467\) 23.1417 13.3609i 1.07087 0.618267i 0.142451 0.989802i \(-0.454502\pi\)
0.928419 + 0.371535i \(0.121168\pi\)
\(468\) 0 0
\(469\) 12.6539 + 8.96830i 0.584304 + 0.414118i
\(470\) 0 0
\(471\) 31.5456 + 37.5946i 1.45355 + 1.73227i
\(472\) 0 0
\(473\) 17.3318 6.30826i 0.796917 0.290054i
\(474\) 0 0
\(475\) 10.8852 + 13.0742i 0.499447 + 0.599884i
\(476\) 0 0
\(477\) 0.937004 + 0.165219i 0.0429025 + 0.00756486i
\(478\) 0 0
\(479\) −3.30821 + 0.583327i −0.151156 + 0.0266529i −0.248714 0.968577i \(-0.580008\pi\)
0.0975581 + 0.995230i \(0.468897\pi\)
\(480\) 0 0
\(481\) −4.31108 + 0.760161i −0.196569 + 0.0346603i
\(482\) 0 0
\(483\) −26.1507 26.4506i −1.18990 1.20354i
\(484\) 0 0
\(485\) −2.24314 + 6.16299i −0.101856 + 0.279847i
\(486\) 0 0
\(487\) 8.27929 + 4.78005i 0.375170 + 0.216605i 0.675715 0.737163i \(-0.263835\pi\)
−0.300545 + 0.953768i \(0.597168\pi\)
\(488\) 0 0
\(489\) −9.07099 + 3.30157i −0.410204 + 0.149302i
\(490\) 0 0
\(491\) −18.3565 15.4029i −0.828416 0.695123i 0.126511 0.991965i \(-0.459622\pi\)
−0.954927 + 0.296842i \(0.904067\pi\)
\(492\) 0 0
\(493\) −16.8715 29.2223i −0.759853 1.31610i
\(494\) 0 0
\(495\) −6.34907 3.66564i −0.285369 0.164758i
\(496\) 0 0
\(497\) 14.7831 + 21.3706i 0.663111 + 0.958603i
\(498\) 0 0
\(499\) 4.92526 27.9325i 0.220485 1.25043i −0.650646 0.759381i \(-0.725502\pi\)
0.871131 0.491051i \(-0.163387\pi\)
\(500\) 0 0
\(501\) 25.5939 44.3299i 1.14345 1.98051i
\(502\) 0 0
\(503\) −2.04143 + 0.359959i −0.0910227 + 0.0160498i −0.218974 0.975731i \(-0.570271\pi\)
0.127951 + 0.991780i \(0.459160\pi\)
\(504\) 0 0
\(505\) −1.40913 + 2.44069i −0.0627056 + 0.108609i
\(506\) 0 0
\(507\) 29.9507 + 10.9012i 1.33016 + 0.484138i
\(508\) 0 0
\(509\) −6.02661 + 5.05693i −0.267125 + 0.224144i −0.766505 0.642239i \(-0.778006\pi\)
0.499380 + 0.866383i \(0.333561\pi\)
\(510\) 0 0
\(511\) −24.1301 + 1.97258i −1.06745 + 0.0872619i
\(512\) 0 0
\(513\) 3.71193 2.12411i 0.163886 0.0937818i
\(514\) 0 0
\(515\) −0.202861 0.557356i −0.00893912 0.0245600i
\(516\) 0 0
\(517\) −1.36959 + 3.76291i −0.0602343 + 0.165492i
\(518\) 0 0
\(519\) 14.9154 12.5155i 0.654714 0.549370i
\(520\) 0 0
\(521\) −2.38193 −0.104354 −0.0521772 0.998638i \(-0.516616\pi\)
−0.0521772 + 0.998638i \(0.516616\pi\)
\(522\) 0 0
\(523\) −13.9841 5.08980i −0.611482 0.222561i 0.0176696 0.999844i \(-0.494375\pi\)
−0.629152 + 0.777283i \(0.716598\pi\)
\(524\) 0 0
\(525\) 6.89855 25.1709i 0.301077 1.09855i
\(526\) 0 0
\(527\) 2.08649 + 0.367905i 0.0908890 + 0.0160262i
\(528\) 0 0
\(529\) 1.37853 7.81801i 0.0599359 0.339914i
\(530\) 0 0
\(531\) −22.0907 −0.958654
\(532\) 0 0
\(533\) −0.290427 −0.0125798
\(534\) 0 0
\(535\) 1.49211 8.46219i 0.0645096 0.365852i
\(536\) 0 0
\(537\) 40.5904 + 7.15717i 1.75160 + 0.308855i
\(538\) 0 0
\(539\) −12.6049 + 7.08710i −0.542932 + 0.305263i
\(540\) 0 0
\(541\) 33.1913 + 12.0806i 1.42700 + 0.519387i 0.936071 0.351810i \(-0.114434\pi\)
0.490933 + 0.871197i \(0.336656\pi\)
\(542\) 0 0
\(543\) 36.1139 1.54979
\(544\) 0 0
\(545\) 5.50223 4.61692i 0.235690 0.197767i
\(546\) 0 0
\(547\) 1.02493 2.81599i 0.0438231 0.120403i −0.915851 0.401519i \(-0.868482\pi\)
0.959674 + 0.281116i \(0.0907046\pi\)
\(548\) 0 0
\(549\) 13.4243 + 36.8831i 0.572937 + 1.57413i
\(550\) 0 0
\(551\) −32.9324 12.1299i −1.40297 0.516752i
\(552\) 0 0
\(553\) 18.6210 + 26.9188i 0.791844 + 1.14470i
\(554\) 0 0
\(555\) −14.2247 + 11.9360i −0.603806 + 0.506653i
\(556\) 0 0
\(557\) −42.3181 15.4025i −1.79307 0.652626i −0.998995 0.0448121i \(-0.985731\pi\)
−0.794080 0.607814i \(-0.792047\pi\)
\(558\) 0 0
\(559\) 2.78607 4.82562i 0.117838 0.204102i
\(560\) 0 0
\(561\) 21.5497 3.79980i 0.909830 0.160428i
\(562\) 0 0
\(563\) 23.0136 39.8607i 0.969906 1.67993i 0.274093 0.961703i \(-0.411622\pi\)
0.695813 0.718223i \(-0.255044\pi\)
\(564\) 0 0
\(565\) 2.74910 15.5909i 0.115655 0.655914i
\(566\) 0 0
\(567\) 18.3777 + 8.69753i 0.771790 + 0.365262i
\(568\) 0 0
\(569\) 2.41070 + 1.39182i 0.101062 + 0.0583482i 0.549679 0.835376i \(-0.314750\pi\)
−0.448617 + 0.893724i \(0.648083\pi\)
\(570\) 0 0
\(571\) −17.1966 29.7853i −0.719654 1.24648i −0.961137 0.276072i \(-0.910967\pi\)
0.241483 0.970405i \(-0.422366\pi\)
\(572\) 0 0
\(573\) −28.8942 24.2451i −1.20707 1.01285i
\(574\) 0 0
\(575\) 20.3998 7.42490i 0.850728 0.309640i
\(576\) 0 0
\(577\) −32.2628 18.6269i −1.34312 0.775449i −0.355854 0.934542i \(-0.615810\pi\)
−0.987264 + 0.159092i \(0.949143\pi\)
\(578\) 0 0
\(579\) −13.0653 + 35.8967i −0.542977 + 1.49182i
\(580\) 0 0
\(581\) −9.48148 + 9.37400i −0.393358 + 0.388899i
\(582\) 0 0
\(583\) 0.571300 0.100736i 0.0236608 0.00417204i
\(584\) 0 0
\(585\) −2.18120 + 0.384604i −0.0901815 + 0.0159014i
\(586\) 0 0
\(587\) 29.8277 + 5.25943i 1.23112 + 0.217080i 0.751107 0.660181i \(-0.229520\pi\)
0.480015 + 0.877261i \(0.340631\pi\)
\(588\) 0 0
\(589\) 1.91259 1.09446i 0.0788067 0.0450963i
\(590\) 0 0
\(591\) 28.2312 10.2753i 1.16127 0.422669i
\(592\) 0 0
\(593\) −24.7872 29.5403i −1.01789 1.21307i −0.976852 0.213915i \(-0.931378\pi\)
−0.0410368 0.999158i \(-0.513066\pi\)
\(594\) 0 0
\(595\) −4.84820 10.5536i −0.198757 0.432657i
\(596\) 0 0
\(597\) −38.7896 + 22.3952i −1.58755 + 0.916574i
\(598\) 0 0
\(599\) 29.7680 + 35.4761i 1.21629 + 1.44951i 0.856238 + 0.516581i \(0.172795\pi\)
0.360049 + 0.932934i \(0.382760\pi\)
\(600\) 0 0
\(601\) −7.57073 13.1129i −0.308816 0.534886i 0.669287 0.743004i \(-0.266600\pi\)
−0.978104 + 0.208118i \(0.933266\pi\)
\(602\) 0 0
\(603\) 6.79321 + 18.6642i 0.276641 + 0.760065i
\(604\) 0 0
\(605\) 6.94455 + 1.22451i 0.282336 + 0.0497835i
\(606\) 0 0
\(607\) 16.4930 28.5668i 0.669432 1.15949i −0.308631 0.951182i \(-0.599871\pi\)
0.978063 0.208308i \(-0.0667957\pi\)
\(608\) 0 0
\(609\) 13.6383 + 52.0846i 0.552652 + 2.11058i
\(610\) 0 0
\(611\) 0.413765 + 1.13681i 0.0167391 + 0.0459904i
\(612\) 0 0
\(613\) −18.8170 15.7893i −0.760010 0.637724i 0.178120 0.984009i \(-0.442999\pi\)
−0.938129 + 0.346285i \(0.887443\pi\)
\(614\) 0 0
\(615\) −1.06690 + 0.615974i −0.0430215 + 0.0248385i
\(616\) 0 0
\(617\) −0.347381 1.97009i −0.0139850 0.0793130i 0.977016 0.213164i \(-0.0683768\pi\)
−0.991001 + 0.133851i \(0.957266\pi\)
\(618\) 0 0
\(619\) 8.16127i 0.328029i −0.986458 0.164015i \(-0.947556\pi\)
0.986458 0.164015i \(-0.0524444\pi\)
\(620\) 0 0
\(621\) −0.947663 5.37447i −0.0380284 0.215670i
\(622\) 0 0
\(623\) 13.0243 + 28.3515i 0.521808 + 1.13588i
\(624\) 0 0
\(625\) 7.46684 + 6.26542i 0.298673 + 0.250617i
\(626\) 0 0
\(627\) 14.6962 17.3782i 0.586909 0.694018i
\(628\) 0 0
\(629\) 5.10459 28.9496i 0.203533 1.15430i
\(630\) 0 0
\(631\) 24.0553 + 8.75542i 0.957627 + 0.348548i 0.773103 0.634280i \(-0.218703\pi\)
0.184524 + 0.982828i \(0.440926\pi\)
\(632\) 0 0
\(633\) −4.70090 + 12.9156i −0.186844 + 0.513349i
\(634\) 0 0
\(635\) 4.81955 + 8.34770i 0.191258 + 0.331268i
\(636\) 0 0
\(637\) −1.54089 + 4.08794i −0.0610522 + 0.161970i
\(638\) 0 0
\(639\) 33.2773i 1.31643i
\(640\) 0 0
\(641\) −11.8758 + 14.1530i −0.469064 + 0.559009i −0.947765 0.318969i \(-0.896663\pi\)
0.478701 + 0.877978i \(0.341108\pi\)
\(642\) 0 0
\(643\) 9.26059 11.0363i 0.365202 0.435231i −0.551883 0.833921i \(-0.686091\pi\)
0.917086 + 0.398690i \(0.130535\pi\)
\(644\) 0 0
\(645\) 23.6362i 0.930673i
\(646\) 0 0
\(647\) −37.2079 + 21.4820i −1.46279 + 0.844544i −0.999140 0.0414724i \(-0.986795\pi\)
−0.463654 + 0.886017i \(0.653462\pi\)
\(648\) 0 0
\(649\) −12.6566 + 4.60663i −0.496816 + 0.180826i
\(650\) 0 0
\(651\) −3.05566 1.44614i −0.119761 0.0566787i
\(652\) 0 0
\(653\) 36.2183 1.41733 0.708666 0.705544i \(-0.249297\pi\)
0.708666 + 0.705544i \(0.249297\pi\)
\(654\) 0 0
\(655\) −4.80447 + 4.03143i −0.187726 + 0.157521i
\(656\) 0 0
\(657\) −26.8507 15.5022i −1.04754 0.604800i
\(658\) 0 0
\(659\) 20.4115 + 24.3255i 0.795118 + 0.947585i 0.999510 0.0313041i \(-0.00996604\pi\)
−0.204392 + 0.978889i \(0.565522\pi\)
\(660\) 0 0
\(661\) 7.91508 + 44.8887i 0.307861 + 1.74597i 0.609723 + 0.792615i \(0.291281\pi\)
−0.301862 + 0.953352i \(0.597608\pi\)
\(662\) 0 0
\(663\) 4.24935 5.06418i 0.165031 0.196676i
\(664\) 0 0
\(665\) −10.8985 5.20922i −0.422625 0.202005i
\(666\) 0 0
\(667\) −28.7866 + 34.3065i −1.11462 + 1.32835i
\(668\) 0 0
\(669\) −1.96624 11.1511i −0.0760192 0.431126i
\(670\) 0 0
\(671\) 15.3827 + 18.3323i 0.593841 + 0.707712i
\(672\) 0 0
\(673\) −41.6004 24.0180i −1.60358 0.925826i −0.990764 0.135599i \(-0.956704\pi\)
−0.612814 0.790227i \(-0.709963\pi\)
\(674\) 0 0
\(675\) 2.93343 2.46144i 0.112908 0.0947409i
\(676\) 0 0
\(677\) −20.1456 −0.774259 −0.387130 0.922025i \(-0.626533\pi\)
−0.387130 + 0.922025i \(0.626533\pi\)
\(678\) 0 0
\(679\) 1.34978 + 16.5115i 0.0517998 + 0.633654i
\(680\) 0 0
\(681\) −36.3830 + 13.2423i −1.39420 + 0.507447i
\(682\) 0 0
\(683\) 15.4155 8.90011i 0.589856 0.340553i −0.175185 0.984536i \(-0.556052\pi\)
0.765040 + 0.643982i \(0.222719\pi\)
\(684\) 0 0
\(685\) 3.14798i 0.120278i
\(686\) 0 0
\(687\) 35.6431 42.4778i 1.35987 1.62063i
\(688\) 0 0
\(689\) 0.112654 0.134255i 0.00429176 0.00511472i
\(690\) 0 0
\(691\) 27.1326i 1.03217i 0.856536 + 0.516087i \(0.172612\pi\)
−0.856536 + 0.516087i \(0.827388\pi\)
\(692\) 0 0
\(693\) −18.4386 1.71913i −0.700424 0.0653042i
\(694\) 0 0
\(695\) 1.85197 + 3.20771i 0.0702494 + 0.121675i
\(696\) 0 0
\(697\) 0.667029 1.83265i 0.0252655 0.0694165i
\(698\) 0 0
\(699\) −61.8785 22.5219i −2.34046 0.851857i
\(700\) 0 0
\(701\) −3.54939 + 20.1296i −0.134059 + 0.760284i 0.841452 + 0.540332i \(0.181701\pi\)
−0.975511 + 0.219952i \(0.929410\pi\)
\(702\) 0 0
\(703\) −15.1853 26.5367i −0.572725 1.00085i
\(704\) 0 0
\(705\) 3.93107 + 3.29856i 0.148053 + 0.124231i
\(706\) 0 0
\(707\) −0.660862 + 7.08811i −0.0248543 + 0.266576i
\(708\) 0 0
\(709\) 3.71658 + 21.0778i 0.139579 + 0.791593i 0.971561 + 0.236790i \(0.0760952\pi\)
−0.831982 + 0.554803i \(0.812794\pi\)
\(710\) 0 0
\(711\) 41.9167i 1.57200i
\(712\) 0 0
\(713\) −0.488287 2.76921i −0.0182865 0.103708i
\(714\) 0 0
\(715\) −1.16949 + 0.675207i −0.0437365 + 0.0252513i
\(716\) 0 0
\(717\) 13.8668 + 11.6356i 0.517866 + 0.434541i
\(718\) 0 0
\(719\) −11.1016 30.5014i −0.414020 1.13751i −0.955034 0.296497i \(-0.904182\pi\)
0.541014 0.841014i \(-0.318041\pi\)
\(720\) 0 0
\(721\) −1.05334 1.06542i −0.0392286 0.0396784i
\(722\) 0 0
\(723\) −32.1884 + 55.7519i −1.19710 + 2.07344i
\(724\) 0 0
\(725\) −30.9465 5.45671i −1.14933 0.202657i
\(726\) 0 0
\(727\) −9.80057 26.9268i −0.363483 0.998662i −0.977789 0.209593i \(-0.932786\pi\)
0.614306 0.789068i \(-0.289436\pi\)
\(728\) 0 0
\(729\) 16.7384 + 28.9918i 0.619942 + 1.07377i
\(730\) 0 0
\(731\) 24.0517 + 28.6637i 0.889584 + 1.06016i
\(732\) 0 0
\(733\) −12.1710 + 7.02692i −0.449546 + 0.259545i −0.707638 0.706575i \(-0.750239\pi\)
0.258093 + 0.966120i \(0.416906\pi\)
\(734\) 0 0
\(735\) 3.00969 + 18.2854i 0.111014 + 0.674465i
\(736\) 0 0
\(737\) 7.78419 + 9.27684i 0.286734 + 0.341717i
\(738\) 0 0
\(739\) 47.0311 17.1179i 1.73007 0.629693i 0.731432 0.681914i \(-0.238852\pi\)
0.998636 + 0.0522208i \(0.0166300\pi\)
\(740\) 0 0
\(741\) 0.0264175 6.87571i 0.000970471 0.252586i
\(742\) 0 0
\(743\) −7.91373 1.39540i −0.290326 0.0511924i 0.0265881 0.999646i \(-0.491536\pi\)
−0.316915 + 0.948454i \(0.602647\pi\)
\(744\) 0 0
\(745\) −18.8943 + 3.33157i −0.692233 + 0.122059i
\(746\) 0 0
\(747\) −16.8151 + 2.96496i −0.615233 + 0.108482i
\(748\) 0 0
\(749\) −5.49806 20.9971i −0.200895 0.767216i
\(750\) 0 0
\(751\) 4.27218 11.7377i 0.155894 0.428316i −0.837017 0.547177i \(-0.815702\pi\)
0.992911 + 0.118862i \(0.0379245\pi\)
\(752\) 0 0
\(753\) 57.7071 + 33.3172i 2.10296 + 1.21415i
\(754\) 0 0
\(755\) −9.80443 + 3.56852i −0.356820 + 0.129872i
\(756\) 0 0
\(757\) −6.57900 5.52043i −0.239118 0.200644i 0.515352 0.856979i \(-0.327661\pi\)
−0.754469 + 0.656335i \(0.772106\pi\)
\(758\) 0 0
\(759\) −14.5211 25.1513i −0.527083 0.912934i
\(760\) 0 0
\(761\) −45.7925 26.4383i −1.65998 0.958388i −0.972723 0.231971i \(-0.925482\pi\)
−0.687254 0.726417i \(-0.741184\pi\)
\(762\) 0 0
\(763\) 7.76123 16.3993i 0.280975 0.593695i
\(764\) 0 0
\(765\) 2.58268 14.6471i 0.0933769 0.529567i
\(766\) 0 0
\(767\) −2.03454 + 3.52393i −0.0734630 + 0.127242i
\(768\) 0 0
\(769\) 14.3776 2.53516i 0.518469 0.0914201i 0.0917105 0.995786i \(-0.470767\pi\)
0.426758 + 0.904366i \(0.359655\pi\)
\(770\) 0 0
\(771\) 10.0294 17.3714i 0.361200 0.625617i
\(772\) 0 0
\(773\) −11.6988 4.25800i −0.420775 0.153150i 0.122950 0.992413i \(-0.460764\pi\)
−0.543725 + 0.839263i \(0.682987\pi\)
\(774\) 0 0
\(775\) 1.51146 1.26827i 0.0542933 0.0455575i
\(776\) 0 0
\(777\) −20.0648 + 42.3966i −0.719822 + 1.52097i
\(778\) 0 0
\(779\) −0.686434 1.90875i −0.0245940 0.0683880i
\(780\) 0 0
\(781\) 6.93942 + 19.0659i 0.248312 + 0.682231i
\(782\) 0 0
\(783\) −2.70182 + 7.42320i −0.0965553 + 0.265284i
\(784\) 0 0
\(785\) 15.5797 13.0729i 0.556062 0.466591i
\(786\) 0 0
\(787\) 40.7012 1.45084 0.725421 0.688305i \(-0.241645\pi\)
0.725421 + 0.688305i \(0.241645\pi\)
\(788\) 0 0
\(789\) 61.1711 + 22.2644i 2.17775 + 0.792635i
\(790\) 0 0
\(791\) −10.1297 38.6854i −0.360172 1.37550i
\(792\) 0 0
\(793\) 7.12000 + 1.25545i 0.252839 + 0.0445823i
\(794\) 0 0
\(795\) 0.129093 0.732122i 0.00457845 0.0259657i
\(796\) 0 0
\(797\) −42.3608 −1.50050 −0.750249 0.661155i \(-0.770066\pi\)
−0.750249 + 0.661155i \(0.770066\pi\)
\(798\) 0 0
\(799\) −8.12378 −0.287399
\(800\) 0 0
\(801\) −6.93816 + 39.3483i −0.245148 + 1.39030i
\(802\) 0 0
\(803\) −18.6165 3.28259i −0.656963 0.115840i
\(804\) 0 0
\(805\) −10.9614 + 10.8372i −0.386339 + 0.381960i
\(806\) 0 0
\(807\) −23.7446 8.64231i −0.835848 0.304224i
\(808\) 0 0
\(809\) −29.2965 −1.03001 −0.515005 0.857187i \(-0.672210\pi\)
−0.515005 + 0.857187i \(0.672210\pi\)
\(810\) 0 0
\(811\) −14.8413 + 12.4533i −0.521147 + 0.437294i −0.865031 0.501718i \(-0.832702\pi\)
0.343884 + 0.939012i \(0.388257\pi\)
\(812\) 0 0
\(813\) 15.8391 43.5177i 0.555503 1.52623i
\(814\) 0 0
\(815\) 1.36821 + 3.75913i 0.0479263 + 0.131676i
\(816\) 0 0
\(817\) 38.2999 + 6.90514i 1.33994 + 0.241580i
\(818\) 0 0
\(819\) −4.60108 + 3.18278i −0.160775 + 0.111215i
\(820\) 0 0
\(821\) 1.30810 1.09762i 0.0456529 0.0383073i −0.619676 0.784858i \(-0.712736\pi\)
0.665329 + 0.746551i \(0.268291\pi\)
\(822\) 0 0
\(823\) 29.9815 + 10.9124i 1.04509 + 0.380382i 0.806808 0.590814i \(-0.201193\pi\)
0.238283 + 0.971196i \(0.423415\pi\)
\(824\) 0 0
\(825\) 10.1891 17.6481i 0.354741 0.614429i
\(826\) 0 0
\(827\) −11.2438 + 1.98259i −0.390985 + 0.0689413i −0.365685 0.930739i \(-0.619165\pi\)
−0.0253002 + 0.999680i \(0.508054\pi\)
\(828\) 0 0
\(829\) 24.0471 41.6507i 0.835189 1.44659i −0.0586880 0.998276i \(-0.518692\pi\)
0.893877 0.448313i \(-0.147975\pi\)
\(830\) 0 0
\(831\) −6.78228 + 38.4642i −0.235275 + 1.33431i
\(832\) 0 0
\(833\) −22.2567 19.1121i −0.771148 0.662196i
\(834\) 0 0
\(835\) −18.3708 10.6064i −0.635749 0.367050i
\(836\) 0 0
\(837\) −0.248003 0.429555i −0.00857225 0.0148476i
\(838\) 0 0
\(839\) −38.5974 32.3870i −1.33253 1.11812i −0.983479 0.181020i \(-0.942060\pi\)
−0.349050 0.937104i \(-0.613495\pi\)
\(840\) 0 0
\(841\) 33.6647 12.2530i 1.16085 0.422516i
\(842\) 0 0
\(843\) −70.3931 40.6415i −2.42447 1.39977i
\(844\) 0 0
\(845\) 4.51757 12.4119i 0.155409 0.426983i
\(846\) 0 0
\(847\) 17.2314 4.51203i 0.592078 0.155035i
\(848\) 0 0
\(849\) 7.32694 1.29194i 0.251460 0.0443392i
\(850\) 0 0
\(851\) −38.4222 + 6.77487i −1.31710 + 0.232239i
\(852\) 0 0
\(853\) −39.7702 7.01257i −1.36171 0.240106i −0.555391 0.831590i \(-0.687431\pi\)
−0.806317 + 0.591484i \(0.798542\pi\)
\(854\) 0 0
\(855\) −7.68303 13.4263i −0.262754 0.459169i
\(856\) 0 0
\(857\) 28.7141 10.4511i 0.980856 0.357002i 0.198683 0.980064i \(-0.436334\pi\)
0.782173 + 0.623062i \(0.214111\pi\)
\(858\) 0 0
\(859\) 30.6161 + 36.4868i 1.04461 + 1.24491i 0.968814 + 0.247791i \(0.0797045\pi\)
0.0757934 + 0.997124i \(0.475851\pi\)
\(860\) 0 0
\(861\) −1.79939 + 2.53887i −0.0613231 + 0.0865245i
\(862\) 0 0
\(863\) −1.24770 + 0.720362i −0.0424723 + 0.0245214i −0.521086 0.853504i \(-0.674473\pi\)
0.478613 + 0.878026i \(0.341140\pi\)
\(864\) 0 0
\(865\) −5.18658 6.18112i −0.176349 0.210165i
\(866\) 0 0
\(867\) 0.712675 + 1.23439i 0.0242037 + 0.0419221i
\(868\) 0 0
\(869\) 8.74100 + 24.0157i 0.296518 + 0.814676i
\(870\) 0 0
\(871\) 3.60298 + 0.635303i 0.122082 + 0.0215264i
\(872\) 0 0
\(873\) −10.6077 + 18.3731i −0.359017 + 0.621836i
\(874\) 0 0
\(875\) −23.7944 6.52128i −0.804398 0.220460i
\(876\) 0 0
\(877\) −2.43147 6.68041i −0.0821050 0.225582i 0.891846 0.452338i \(-0.149410\pi\)
−0.973951 + 0.226757i \(0.927188\pi\)
\(878\) 0 0
\(879\) 1.15369 + 0.968058i 0.0389129 + 0.0326518i
\(880\) 0 0
\(881\) −24.1095 + 13.9196i −0.812269 + 0.468964i −0.847743 0.530407i \(-0.822039\pi\)
0.0354739 + 0.999371i \(0.488706\pi\)
\(882\) 0 0
\(883\) −4.80697 27.2617i −0.161767 0.917428i −0.952335 0.305054i \(-0.901326\pi\)
0.790568 0.612374i \(-0.209786\pi\)
\(884\) 0 0
\(885\) 17.2604i 0.580203i
\(886\) 0 0
\(887\) −7.31570 41.4894i −0.245637 1.39308i −0.819009 0.573781i \(-0.805476\pi\)
0.573372 0.819295i \(-0.305635\pi\)
\(888\) 0 0
\(889\) 19.8648 + 14.0789i 0.666245 + 0.472192i
\(890\) 0 0
\(891\) 12.1611 + 10.2044i 0.407413 + 0.341860i
\(892\) 0 0
\(893\) −6.49341 + 5.40624i −0.217294 + 0.180913i
\(894\) 0 0
\(895\) 2.96602 16.8211i 0.0991430 0.562268i
\(896\) 0 0
\(897\) −8.24480 3.00086i −0.275286 0.100196i
\(898\) 0 0
\(899\) −1.39212 + 3.82483i −0.0464300 + 0.127565i
\(900\) 0 0
\(901\) 0.588441 + 1.01921i 0.0196038 + 0.0339548i
\(902\) 0 0
\(903\) −24.9233 54.2534i −0.829394 1.80544i
\(904\) 0 0
\(905\) 14.9660i 0.497487i
\(906\) 0 0
\(907\) 1.18769 1.41543i 0.0394365 0.0469986i −0.745966 0.665984i \(-0.768012\pi\)
0.785402 + 0.618986i \(0.212456\pi\)
\(908\) 0 0
\(909\) −5.85998 + 6.98365i −0.194363 + 0.231633i
\(910\) 0 0
\(911\) 30.5251i 1.01134i −0.862727 0.505670i \(-0.831245\pi\)
0.862727 0.505670i \(-0.168755\pi\)
\(912\) 0 0
\(913\) −9.01575 + 5.20524i −0.298378 + 0.172268i
\(914\) 0 0
\(915\) 28.8183 10.4890i 0.952705 0.346756i
\(916\) 0 0
\(917\) −6.77699 + 14.3196i −0.223796 + 0.472876i
\(918\) 0 0
\(919\) 17.5512 0.578962 0.289481 0.957184i \(-0.406517\pi\)
0.289481 + 0.957184i \(0.406517\pi\)
\(920\) 0 0
\(921\) −29.9470 + 25.1285i −0.986786 + 0.828012i
\(922\) 0 0
\(923\) 5.30844 + 3.06483i 0.174729 + 0.100880i
\(924\) 0 0
\(925\) −17.5969 20.9712i −0.578582 0.689528i
\(926\) 0 0
\(927\) −0.333168 1.88949i −0.0109427 0.0620591i
\(928\) 0 0
\(929\) 14.7280 17.5522i 0.483211 0.575868i −0.468267 0.883587i \(-0.655121\pi\)
0.951477 + 0.307719i \(0.0995657\pi\)
\(930\) 0 0
\(931\) −30.5087 0.465056i −0.999884 0.0152416i
\(932\) 0 0
\(933\) −34.5825 + 41.2138i −1.13218 + 1.34928i
\(934\) 0 0
\(935\) −1.57468 8.93046i −0.0514976 0.292057i
\(936\) 0 0
\(937\) −24.2550 28.9060i −0.792378 0.944319i 0.207044 0.978332i \(-0.433616\pi\)
−0.999421 + 0.0340128i \(0.989171\pi\)
\(938\) 0 0
\(939\) −27.5883 15.9281i −0.900311 0.519795i
\(940\) 0 0
\(941\) −25.7387 + 21.5974i −0.839058 + 0.704054i −0.957352 0.288925i \(-0.906702\pi\)
0.118293 + 0.992979i \(0.462258\pi\)
\(942\) 0 0
\(943\) −2.58841 −0.0842902
\(944\) 0 0
\(945\) −1.16311 + 2.45763i −0.0378360 + 0.0799467i
\(946\) 0 0
\(947\) 10.9463 3.98414i 0.355708 0.129467i −0.157984 0.987442i \(-0.550500\pi\)
0.513692 + 0.857975i \(0.328277\pi\)
\(948\) 0 0
\(949\) −4.94587 + 2.85550i −0.160550 + 0.0926933i
\(950\) 0 0
\(951\) 55.0526i 1.78520i
\(952\) 0 0
\(953\) 9.62888 11.4752i 0.311910 0.371720i −0.587201 0.809441i \(-0.699770\pi\)
0.899111 + 0.437722i \(0.144214\pi\)
\(954\) 0 0
\(955\) −10.0475 + 11.9741i −0.325128 + 0.387473i
\(956\) 0 0
\(957\) 42.0389i 1.35892i
\(958\) 0 0
\(959\) 3.31940 + 7.22572i 0.107189 + 0.233331i
\(960\) 0 0
\(961\) 15.3722 + 26.6255i 0.495878 + 0.858886i
\(962\) 0 0
\(963\) 9.50669 26.1194i 0.306349 0.841687i
\(964\) 0 0
\(965\) 14.8760 + 5.41443i 0.478876 + 0.174297i
\(966\) 0 0
\(967\) −5.62252 + 31.8869i −0.180808 + 1.02541i 0.750416 + 0.660966i \(0.229853\pi\)
−0.931224 + 0.364448i \(0.881258\pi\)
\(968\) 0 0
\(969\) 43.3263 + 15.9583i 1.39184 + 0.512653i
\(970\) 0 0
\(971\) −46.9467 39.3930i −1.50659 1.26418i −0.870076 0.492917i \(-0.835931\pi\)
−0.636516 0.771264i \(-0.719625\pi\)
\(972\) 0 0
\(973\) 7.63332 + 5.41001i 0.244713 + 0.173437i
\(974\) 0 0
\(975\) −1.06906 6.06295i −0.0342374 0.194170i
\(976\) 0 0
\(977\) 58.3202i 1.86583i 0.360099 + 0.932914i \(0.382743\pi\)
−0.360099 + 0.932914i \(0.617257\pi\)
\(978\) 0 0
\(979\) 4.23026 + 23.9910i 0.135200 + 0.766755i
\(980\) 0 0
\(981\) 20.1216 11.6172i 0.642432 0.370908i
\(982\) 0 0
\(983\) −26.7810 22.4720i −0.854183 0.716744i 0.106524 0.994310i \(-0.466028\pi\)
−0.960707 + 0.277566i \(0.910472\pi\)
\(984\) 0 0
\(985\) −4.25821 11.6993i −0.135678 0.372771i
\(986\) 0 0
\(987\) 12.5014 + 3.42623i 0.397923 + 0.109058i
\(988\) 0 0
\(989\) 24.8306 43.0079i 0.789568 1.36757i
\(990\) 0 0
\(991\) −43.2004 7.61740i −1.37231 0.241975i −0.561591 0.827415i \(-0.689811\pi\)
−0.810716 + 0.585440i \(0.800922\pi\)
\(992\) 0 0
\(993\) 18.0237 + 49.5197i 0.571965 + 1.57146i
\(994\) 0 0
\(995\) 9.28083 + 16.0749i 0.294222 + 0.509608i
\(996\) 0 0
\(997\) 16.0380 + 19.1134i 0.507930 + 0.605327i 0.957683 0.287826i \(-0.0929324\pi\)
−0.449753 + 0.893153i \(0.648488\pi\)
\(998\) 0 0
\(999\) −5.95997 + 3.44099i −0.188565 + 0.108868i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 532.2.cj.a.173.12 yes 78
7.3 odd 6 532.2.bw.a.325.12 yes 78
19.10 odd 18 532.2.bw.a.257.12 78
133.10 even 18 inner 532.2.cj.a.409.12 yes 78
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.2.bw.a.257.12 78 19.10 odd 18
532.2.bw.a.325.12 yes 78 7.3 odd 6
532.2.cj.a.173.12 yes 78 1.1 even 1 trivial
532.2.cj.a.409.12 yes 78 133.10 even 18 inner