L(s) = 1 | − 1.07·3-s + (−1.76 + 3.05i)5-s + (−1.25 − 2.32i)7-s − 1.84·9-s + (2.10 − 3.64i)11-s + (0.480 − 0.831i)13-s + (1.89 − 3.27i)15-s + 4.91·17-s + (2.82 − 3.32i)19-s + (1.34 + 2.49i)21-s + 3.66·23-s + (−3.70 − 6.41i)25-s + 5.20·27-s + (2.27 − 3.93i)29-s + (−3.20 + 5.54i)31-s + ⋯ |
L(s) = 1 | − 0.619·3-s + (−0.787 + 1.36i)5-s + (−0.475 − 0.879i)7-s − 0.615·9-s + (0.635 − 1.09i)11-s + (0.133 − 0.230i)13-s + (0.488 − 0.845i)15-s + 1.19·17-s + (0.647 − 0.762i)19-s + (0.294 + 0.545i)21-s + 0.765·23-s + (−0.740 − 1.28i)25-s + 1.00·27-s + (0.421 − 0.730i)29-s + (−0.574 + 0.995i)31-s + ⋯ |
Λ(s)=(=(532s/2ΓC(s)L(s)(0.533+0.846i)Λ(2−s)
Λ(s)=(=(532s/2ΓC(s+1/2)L(s)(0.533+0.846i)Λ(1−s)
Degree: |
2 |
Conductor: |
532
= 22⋅7⋅19
|
Sign: |
0.533+0.846i
|
Analytic conductor: |
4.24804 |
Root analytic conductor: |
2.06107 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ532(501,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 532, ( :1/2), 0.533+0.846i)
|
Particular Values
L(1) |
≈ |
0.673863−0.371888i |
L(21) |
≈ |
0.673863−0.371888i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(1.25+2.32i)T |
| 19 | 1+(−2.82+3.32i)T |
good | 3 | 1+1.07T+3T2 |
| 5 | 1+(1.76−3.05i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−2.10+3.64i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−0.480+0.831i)T+(−6.5−11.2i)T2 |
| 17 | 1−4.91T+17T2 |
| 23 | 1−3.66T+23T2 |
| 29 | 1+(−2.27+3.93i)T+(−14.5−25.1i)T2 |
| 31 | 1+(3.20−5.54i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−1.28−2.21i)T+(−18.5+32.0i)T2 |
| 41 | 1+(3.84+6.66i)T+(−20.5+35.5i)T2 |
| 43 | 1+(5.27+9.13i)T+(−21.5+37.2i)T2 |
| 47 | 1+0.902T+47T2 |
| 53 | 1+(6.91+11.9i)T+(−26.5+45.8i)T2 |
| 59 | 1−7.62T+59T2 |
| 61 | 1+2.34T+61T2 |
| 67 | 1+(5.49+9.51i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−0.929−1.61i)T+(−35.5+61.4i)T2 |
| 73 | 1+9.95T+73T2 |
| 79 | 1+(−4.45+7.71i)T+(−39.5−68.4i)T2 |
| 83 | 1+0.481T+83T2 |
| 89 | 1−17.2T+89T2 |
| 97 | 1+(−2.65−4.59i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.74899170103110915431430416683, −10.22342875576444697011411698855, −8.892985510949621311332412250415, −7.80764979844375728627142453932, −6.92682554221899713715117194029, −6.31709310508187046483550590096, −5.17341514388119166489894926270, −3.48583945544305154810449393419, −3.21913851400453235787585936104, −0.55888258520169276543178008862,
1.29155937399692528818197409037, 3.23201370463740731582455023147, 4.54032141658779930620317973072, 5.33442570144776787139411567738, 6.18886753964036697564925892593, 7.47786922956026231377651401704, 8.406320296087745075112892353650, 9.204557575829916443358268058046, 9.895480948427269331362191741892, 11.36020086815316711243472057046