Properties

Label 2-5408-1.1-c1-0-135
Degree $2$
Conductor $5408$
Sign $-1$
Analytic cond. $43.1830$
Root an. cond. $6.57138$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.73·5-s − 3·9-s − 7.92·17-s + 8.92·25-s − 8.46·29-s − 7.73·37-s + 12.6·41-s − 11.1·45-s − 7·49-s − 10.4·53-s − 5.39·61-s + 2.80·73-s + 9·81-s − 29.5·85-s − 16·89-s − 8·97-s + 16.3·101-s − 20·109-s − 20.8·113-s + ⋯
L(s)  = 1  + 1.66·5-s − 9-s − 1.92·17-s + 1.78·25-s − 1.57·29-s − 1.27·37-s + 1.97·41-s − 1.66·45-s − 49-s − 1.43·53-s − 0.690·61-s + 0.328·73-s + 81-s − 3.20·85-s − 1.69·89-s − 0.812·97-s + 1.62·101-s − 1.91·109-s − 1.96·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5408\)    =    \(2^{5} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(43.1830\)
Root analytic conductor: \(6.57138\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5408,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 + 3T^{2} \)
5 \( 1 - 3.73T + 5T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 + 11T^{2} \)
17 \( 1 + 7.92T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 + 8.46T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 + 7.73T + 37T^{2} \)
41 \( 1 - 12.6T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 10.4T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 5.39T + 61T^{2} \)
67 \( 1 + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 2.80T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 16T + 89T^{2} \)
97 \( 1 + 8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.88695849220262539095944527407, −6.85817179297181460565134176588, −6.31773250963612643999737295540, −5.69358746789878464183692862362, −5.11102231779794664847890717306, −4.18937653794930555689353306568, −3.01471572868245050908364521695, −2.28800704006449534940069097623, −1.62412847335338390326292005473, 0, 1.62412847335338390326292005473, 2.28800704006449534940069097623, 3.01471572868245050908364521695, 4.18937653794930555689353306568, 5.11102231779794664847890717306, 5.69358746789878464183692862362, 6.31773250963612643999737295540, 6.85817179297181460565134176588, 7.88695849220262539095944527407

Graph of the $Z$-function along the critical line