L(s) = 1 | + (0.0936 − 0.128i)2-s + (−0.602 + 1.85i)3-s + (1.22 + 3.78i)4-s + (−1.80 + 1.31i)5-s + (0.182 + 0.251i)6-s + (0.0125 − 0.00408i)7-s + (1.20 + 0.392i)8-s + (4.20 + 3.05i)9-s + 0.356i·10-s + (6.77 − 8.66i)11-s − 7.75·12-s + (3.39 − 4.67i)13-s + (0.000651 − 0.00200i)14-s + (−1.34 − 4.14i)15-s + (−12.6 + 9.22i)16-s + (−17.8 − 24.5i)17-s + ⋯ |
L(s) = 1 | + (0.0468 − 0.0644i)2-s + (−0.200 + 0.618i)3-s + (0.307 + 0.945i)4-s + (−0.361 + 0.262i)5-s + (0.0304 + 0.0419i)6-s + (0.00179 − 0.000583i)7-s + (0.151 + 0.0491i)8-s + (0.466 + 0.339i)9-s + 0.0356i·10-s + (0.616 − 0.787i)11-s − 0.646·12-s + (0.261 − 0.359i)13-s + (4.65e−5 − 0.000143i)14-s + (−0.0898 − 0.276i)15-s + (−0.793 + 0.576i)16-s + (−1.04 − 1.44i)17-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)(0.407−0.913i)Λ(3−s)
Λ(s)=(=(55s/2ΓC(s+1)L(s)(0.407−0.913i)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
0.407−0.913i
|
Analytic conductor: |
1.49864 |
Root analytic conductor: |
1.22419 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ55(51,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :1), 0.407−0.913i)
|
Particular Values
L(23) |
≈ |
0.974991+0.632830i |
L(21) |
≈ |
0.974991+0.632830i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(1.80−1.31i)T |
| 11 | 1+(−6.77+8.66i)T |
good | 2 | 1+(−0.0936+0.128i)T+(−1.23−3.80i)T2 |
| 3 | 1+(0.602−1.85i)T+(−7.28−5.29i)T2 |
| 7 | 1+(−0.0125+0.00408i)T+(39.6−28.8i)T2 |
| 13 | 1+(−3.39+4.67i)T+(−52.2−160.i)T2 |
| 17 | 1+(17.8+24.5i)T+(−89.3+274.i)T2 |
| 19 | 1+(−12.4−4.03i)T+(292.+212.i)T2 |
| 23 | 1−13.0T+529T2 |
| 29 | 1+(−27.2+8.86i)T+(680.−494.i)T2 |
| 31 | 1+(−10.2−7.46i)T+(296.+913.i)T2 |
| 37 | 1+(8.14+25.0i)T+(−1.10e3+804.i)T2 |
| 41 | 1+(−2.87−0.933i)T+(1.35e3+988.i)T2 |
| 43 | 1−73.0iT−1.84e3T2 |
| 47 | 1+(−6.67+20.5i)T+(−1.78e3−1.29e3i)T2 |
| 53 | 1+(55.8+40.6i)T+(868.+2.67e3i)T2 |
| 59 | 1+(18.9+58.2i)T+(−2.81e3+2.04e3i)T2 |
| 61 | 1+(56.5+77.8i)T+(−1.14e3+3.53e3i)T2 |
| 67 | 1−67.6T+4.48e3T2 |
| 71 | 1+(41.3−30.0i)T+(1.55e3−4.79e3i)T2 |
| 73 | 1+(41.1−13.3i)T+(4.31e3−3.13e3i)T2 |
| 79 | 1+(4.49−6.18i)T+(−1.92e3−5.93e3i)T2 |
| 83 | 1+(0.721+0.992i)T+(−2.12e3+6.55e3i)T2 |
| 89 | 1+117.T+7.92e3T2 |
| 97 | 1+(−106.−77.6i)T+(2.90e3+8.94e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.85443441187677052845677914486, −14.09542559467638864798423703347, −12.97732716157304661703658042083, −11.60134920690568579360118636308, −10.96170324815448010576794840919, −9.371510093758658077962256888102, −7.991165107587407898105706674005, −6.72388322695164616008034185032, −4.64480615497035529434112458894, −3.18818771425762984152907227252,
1.49639468571285230802312960616, 4.45516816485103377154957278940, 6.26000434721326809175091486122, 7.15008973866106776981374707150, 8.947514828715297823902983132753, 10.24955509158682261816095222362, 11.52932520611932127849014546233, 12.54198766888066049034633809416, 13.72517997110996518955571941978, 15.05168994297607470498430042473