L(s) = 1 | + (0.147 − 0.453i)2-s + (−0.261 + 0.189i)3-s + (1.43 + 1.04i)4-s + (−0.309 − 0.951i)5-s + (0.0476 + 0.146i)6-s + (−2.17 − 1.57i)7-s + (1.45 − 1.05i)8-s + (−0.894 + 2.75i)9-s − 0.477·10-s + (−2.79 − 1.79i)11-s − 0.572·12-s + (−1.44 + 4.43i)13-s + (−1.03 + 0.753i)14-s + (0.261 + 0.189i)15-s + (0.829 + 2.55i)16-s + (−1.42 − 4.39i)17-s + ⋯ |
L(s) = 1 | + (0.104 − 0.320i)2-s + (−0.150 + 0.109i)3-s + (0.716 + 0.520i)4-s + (−0.138 − 0.425i)5-s + (0.0194 + 0.0598i)6-s + (−0.821 − 0.596i)7-s + (0.514 − 0.374i)8-s + (−0.298 + 0.917i)9-s − 0.150·10-s + (−0.841 − 0.540i)11-s − 0.165·12-s + (−0.400 + 1.23i)13-s + (−0.277 + 0.201i)14-s + (0.0674 + 0.0490i)15-s + (0.207 + 0.638i)16-s + (−0.346 − 1.06i)17-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)(0.977+0.209i)Λ(2−s)
Λ(s)=(=(55s/2ΓC(s+1/2)L(s)(0.977+0.209i)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
0.977+0.209i
|
Analytic conductor: |
0.439177 |
Root analytic conductor: |
0.662704 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ55(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :1/2), 0.977+0.209i)
|
Particular Values
L(1) |
≈ |
0.888300−0.0941154i |
L(21) |
≈ |
0.888300−0.0941154i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.309+0.951i)T |
| 11 | 1+(2.79+1.79i)T |
good | 2 | 1+(−0.147+0.453i)T+(−1.61−1.17i)T2 |
| 3 | 1+(0.261−0.189i)T+(0.927−2.85i)T2 |
| 7 | 1+(2.17+1.57i)T+(2.16+6.65i)T2 |
| 13 | 1+(1.44−4.43i)T+(−10.5−7.64i)T2 |
| 17 | 1+(1.42+4.39i)T+(−13.7+9.99i)T2 |
| 19 | 1+(−3.51+2.55i)T+(5.87−18.0i)T2 |
| 23 | 1−2.77T+23T2 |
| 29 | 1+(−2.43−1.77i)T+(8.96+27.5i)T2 |
| 31 | 1+(−0.737+2.26i)T+(−25.0−18.2i)T2 |
| 37 | 1+(−8.61−6.25i)T+(11.4+35.1i)T2 |
| 41 | 1+(−1.78+1.29i)T+(12.6−38.9i)T2 |
| 43 | 1+7.06T+43T2 |
| 47 | 1+(3.52−2.56i)T+(14.5−44.6i)T2 |
| 53 | 1+(1.95−6.02i)T+(−42.8−31.1i)T2 |
| 59 | 1+(9.50+6.90i)T+(18.2+56.1i)T2 |
| 61 | 1+(1.23+3.78i)T+(−49.3+35.8i)T2 |
| 67 | 1−7.31T+67T2 |
| 71 | 1+(−0.369−1.13i)T+(−57.4+41.7i)T2 |
| 73 | 1+(0.826+0.600i)T+(22.5+69.4i)T2 |
| 79 | 1+(−1.08+3.33i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−3.43−10.5i)T+(−67.1+48.7i)T2 |
| 89 | 1−2.76T+89T2 |
| 97 | 1+(−5.72+17.6i)T+(−78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.75056155440062040278034266744, −13.77825355802615383516846051634, −13.10901603888172762826625632825, −11.72468626707099500079624711830, −10.94055486123167482789326732604, −9.566302831696967268366743321529, −7.896252055725894899091818898829, −6.75492738464691154106956630459, −4.77179832299571594616882858543, −2.86878193548490114280889880405,
2.92168491018701487635908797969, 5.55342796449956502906124677934, 6.52183756843724344126252072339, 7.85046637762129686202667974854, 9.708002093866407336057764557194, 10.68483016970310806188454072607, 12.04389045753621286005671996665, 12.99109177053680068805776304200, 14.76110512962494513799275434135, 15.24017275597784785293328193792