L(s) = 1 | + (−1.32 + 0.503i)2-s + i·3-s + (1.49 − 1.33i)4-s + 2.69i·5-s + (−0.503 − 1.32i)6-s + 1.19·7-s + (−1.30 + 2.51i)8-s − 9-s + (−1.35 − 3.56i)10-s + 3.08i·11-s + (1.33 + 1.49i)12-s − 0.0366i·13-s + (−1.58 + 0.603i)14-s − 2.69·15-s + (0.458 − 3.97i)16-s − 0.279·17-s + ⋯ |
L(s) = 1 | + (−0.934 + 0.355i)2-s + 0.577i·3-s + (0.746 − 0.665i)4-s + 1.20i·5-s + (−0.205 − 0.539i)6-s + 0.453·7-s + (−0.460 + 0.887i)8-s − 0.333·9-s + (−0.429 − 1.12i)10-s + 0.930i·11-s + (0.384 + 0.431i)12-s − 0.0101i·13-s + (−0.423 + 0.161i)14-s − 0.696·15-s + (0.114 − 0.993i)16-s − 0.0677·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.887 - 0.460i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.887 - 0.460i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.197001 + 0.807007i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.197001 + 0.807007i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.32 - 0.503i)T \) |
| 3 | \( 1 - iT \) |
| 23 | \( 1 - T \) |
good | 5 | \( 1 - 2.69iT - 5T^{2} \) |
| 7 | \( 1 - 1.19T + 7T^{2} \) |
| 11 | \( 1 - 3.08iT - 11T^{2} \) |
| 13 | \( 1 + 0.0366iT - 13T^{2} \) |
| 17 | \( 1 + 0.279T + 17T^{2} \) |
| 19 | \( 1 - 2.99iT - 19T^{2} \) |
| 29 | \( 1 + 1.31iT - 29T^{2} \) |
| 31 | \( 1 + 3.32T + 31T^{2} \) |
| 37 | \( 1 + 0.965iT - 37T^{2} \) |
| 41 | \( 1 - 0.122T + 41T^{2} \) |
| 43 | \( 1 - 6.45iT - 43T^{2} \) |
| 47 | \( 1 + 7.33T + 47T^{2} \) |
| 53 | \( 1 - 1.48iT - 53T^{2} \) |
| 59 | \( 1 + 0.292iT - 59T^{2} \) |
| 61 | \( 1 + 10.5iT - 61T^{2} \) |
| 67 | \( 1 - 10.7iT - 67T^{2} \) |
| 71 | \( 1 + 7.91T + 71T^{2} \) |
| 73 | \( 1 - 7.30T + 73T^{2} \) |
| 79 | \( 1 + 10.5T + 79T^{2} \) |
| 83 | \( 1 - 13.9iT - 83T^{2} \) |
| 89 | \( 1 - 2.48T + 89T^{2} \) |
| 97 | \( 1 - 12.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.00602704566823990773944815894, −10.09521235406960896134253100098, −9.647516607485069503237068580695, −8.483160854070268269956799682887, −7.59401256775689153127422962193, −6.82990281797856398144465037886, −5.88357392224115248702273487198, −4.69010710227475121771990532756, −3.18858829172446762856574259139, −1.93939371284990620725943110900,
0.64960703030249531000080936564, 1.80736316687207299713392355937, 3.27347073422958843136272727606, 4.77029126189725196508017836974, 5.92978692923479354258228158556, 7.06482815203853781687184237455, 8.017551993898380183622573985621, 8.708735108802231528666371421178, 9.205053519530954379000966228958, 10.45584491142998156973544946850