Properties

Label 552.2.f.d.277.4
Level $552$
Weight $2$
Character 552.277
Analytic conductor $4.408$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [552,2,Mod(277,552)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(552, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("552.277");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 552.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.40774219157\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 2 x^{18} - 2 x^{17} + x^{16} - 4 x^{15} + 16 x^{14} - 24 x^{13} + 32 x^{12} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 277.4
Root \(1.32157 - 0.503453i\) of defining polynomial
Character \(\chi\) \(=\) 552.277
Dual form 552.2.f.d.277.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32157 + 0.503453i) q^{2} +1.00000i q^{3} +(1.49307 - 1.33069i) q^{4} +2.69719i q^{5} +(-0.503453 - 1.32157i) q^{6} +1.19970 q^{7} +(-1.30325 + 2.51029i) q^{8} -1.00000 q^{9} +(-1.35791 - 3.56451i) q^{10} +3.08512i q^{11} +(1.33069 + 1.49307i) q^{12} -0.0366308i q^{13} +(-1.58548 + 0.603992i) q^{14} -2.69719 q^{15} +(0.458519 - 3.97363i) q^{16} -0.279291 q^{17} +(1.32157 - 0.503453i) q^{18} +2.99893i q^{19} +(3.58913 + 4.02710i) q^{20} +1.19970i q^{21} +(-1.55321 - 4.07718i) q^{22} +1.00000 q^{23} +(-2.51029 - 1.30325i) q^{24} -2.27484 q^{25} +(0.0184419 + 0.0484100i) q^{26} -1.00000i q^{27} +(1.79124 - 1.59643i) q^{28} -1.31147i q^{29} +(3.56451 - 1.35791i) q^{30} -3.32528 q^{31} +(1.39457 + 5.48226i) q^{32} -3.08512 q^{33} +(0.369101 - 0.140610i) q^{34} +3.23582i q^{35} +(-1.49307 + 1.33069i) q^{36} -0.965182i q^{37} +(-1.50982 - 3.96329i) q^{38} +0.0366308 q^{39} +(-6.77072 - 3.51511i) q^{40} +0.122446 q^{41} +(-0.603992 - 1.58548i) q^{42} +6.45272i q^{43} +(4.10534 + 4.60630i) q^{44} -2.69719i q^{45} +(-1.32157 + 0.503453i) q^{46} -7.33419 q^{47} +(3.97363 + 0.458519i) q^{48} -5.56072 q^{49} +(3.00635 - 1.14527i) q^{50} -0.279291i q^{51} +(-0.0487443 - 0.0546924i) q^{52} +1.48414i q^{53} +(0.503453 + 1.32157i) q^{54} -8.32115 q^{55} +(-1.56351 + 3.01159i) q^{56} -2.99893 q^{57} +(0.660262 + 1.73319i) q^{58} -0.292402i q^{59} +(-4.02710 + 3.58913i) q^{60} -10.5914i q^{61} +(4.39457 - 1.67412i) q^{62} -1.19970 q^{63} +(-4.60308 - 6.54306i) q^{64} +0.0988003 q^{65} +(4.07718 - 1.55321i) q^{66} +10.7005i q^{67} +(-0.417001 + 0.371650i) q^{68} +1.00000i q^{69} +(-1.62908 - 4.27635i) q^{70} -7.91699 q^{71} +(1.30325 - 2.51029i) q^{72} +7.30232 q^{73} +(0.485924 + 1.27555i) q^{74} -2.27484i q^{75} +(3.99066 + 4.47762i) q^{76} +3.70121i q^{77} +(-0.0484100 + 0.0184419i) q^{78} -10.5602 q^{79} +(10.7176 + 1.23671i) q^{80} +1.00000 q^{81} +(-0.161820 + 0.0616457i) q^{82} +13.9464i q^{83} +(1.59643 + 1.79124i) q^{84} -0.753301i q^{85} +(-3.24864 - 8.52769i) q^{86} +1.31147 q^{87} +(-7.74453 - 4.02068i) q^{88} +2.48847 q^{89} +(1.35791 + 3.56451i) q^{90} -0.0439460i q^{91} +(1.49307 - 1.33069i) q^{92} -3.32528i q^{93} +(9.69261 - 3.69242i) q^{94} -8.08869 q^{95} +(-5.48226 + 1.39457i) q^{96} +12.2447 q^{97} +(7.34885 - 2.79956i) q^{98} -3.08512i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} + 2 q^{6} - 8 q^{7} - 2 q^{8} - 20 q^{9} - 12 q^{10} + 2 q^{14} + 4 q^{15} + 4 q^{16} + 32 q^{17} + 2 q^{18} + 20 q^{20} + 14 q^{22} + 20 q^{23} + 10 q^{24} - 28 q^{25} + 18 q^{28} - 22 q^{32}+ \cdots - 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/552\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(185\) \(277\) \(415\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32157 + 0.503453i −0.934488 + 0.355995i
\(3\) 1.00000i 0.577350i
\(4\) 1.49307 1.33069i 0.746535 0.665346i
\(5\) 2.69719i 1.20622i 0.797658 + 0.603110i \(0.206072\pi\)
−0.797658 + 0.603110i \(0.793928\pi\)
\(6\) −0.503453 1.32157i −0.205534 0.539527i
\(7\) 1.19970 0.453444 0.226722 0.973960i \(-0.427199\pi\)
0.226722 + 0.973960i \(0.427199\pi\)
\(8\) −1.30325 + 2.51029i −0.460768 + 0.887520i
\(9\) −1.00000 −0.333333
\(10\) −1.35791 3.56451i −0.429408 1.12720i
\(11\) 3.08512i 0.930198i 0.885259 + 0.465099i \(0.153981\pi\)
−0.885259 + 0.465099i \(0.846019\pi\)
\(12\) 1.33069 + 1.49307i 0.384138 + 0.431012i
\(13\) 0.0366308i 0.0101596i −0.999987 0.00507978i \(-0.998383\pi\)
0.999987 0.00507978i \(-0.00161695\pi\)
\(14\) −1.58548 + 0.603992i −0.423738 + 0.161424i
\(15\) −2.69719 −0.696412
\(16\) 0.458519 3.97363i 0.114630 0.993408i
\(17\) −0.279291 −0.0677380 −0.0338690 0.999426i \(-0.510783\pi\)
−0.0338690 + 0.999426i \(0.510783\pi\)
\(18\) 1.32157 0.503453i 0.311496 0.118665i
\(19\) 2.99893i 0.688003i 0.938969 + 0.344001i \(0.111782\pi\)
−0.938969 + 0.344001i \(0.888218\pi\)
\(20\) 3.58913 + 4.02710i 0.802554 + 0.900486i
\(21\) 1.19970i 0.261796i
\(22\) −1.55321 4.07718i −0.331146 0.869258i
\(23\) 1.00000 0.208514
\(24\) −2.51029 1.30325i −0.512410 0.266025i
\(25\) −2.27484 −0.454967
\(26\) 0.0184419 + 0.0484100i 0.00361675 + 0.00949399i
\(27\) 1.00000i 0.192450i
\(28\) 1.79124 1.59643i 0.338512 0.301697i
\(29\) 1.31147i 0.243533i −0.992559 0.121767i \(-0.961144\pi\)
0.992559 0.121767i \(-0.0388560\pi\)
\(30\) 3.56451 1.35791i 0.650788 0.247919i
\(31\) −3.32528 −0.597238 −0.298619 0.954372i \(-0.596526\pi\)
−0.298619 + 0.954372i \(0.596526\pi\)
\(32\) 1.39457 + 5.48226i 0.246528 + 0.969136i
\(33\) −3.08512 −0.537050
\(34\) 0.369101 0.140610i 0.0633004 0.0241144i
\(35\) 3.23582i 0.546953i
\(36\) −1.49307 + 1.33069i −0.248845 + 0.221782i
\(37\) 0.965182i 0.158675i −0.996848 0.0793375i \(-0.974720\pi\)
0.996848 0.0793375i \(-0.0252805\pi\)
\(38\) −1.50982 3.96329i −0.244925 0.642930i
\(39\) 0.0366308 0.00586563
\(40\) −6.77072 3.51511i −1.07055 0.555788i
\(41\) 0.122446 0.0191228 0.00956141 0.999954i \(-0.496956\pi\)
0.00956141 + 0.999954i \(0.496956\pi\)
\(42\) −0.603992 1.58548i −0.0931980 0.244645i
\(43\) 6.45272i 0.984030i 0.870587 + 0.492015i \(0.163740\pi\)
−0.870587 + 0.492015i \(0.836260\pi\)
\(44\) 4.10534 + 4.60630i 0.618903 + 0.694425i
\(45\) 2.69719i 0.402073i
\(46\) −1.32157 + 0.503453i −0.194854 + 0.0742301i
\(47\) −7.33419 −1.06980 −0.534901 0.844915i \(-0.679651\pi\)
−0.534901 + 0.844915i \(0.679651\pi\)
\(48\) 3.97363 + 0.458519i 0.573545 + 0.0661816i
\(49\) −5.56072 −0.794389
\(50\) 3.00635 1.14527i 0.425161 0.161966i
\(51\) 0.279291i 0.0391086i
\(52\) −0.0487443 0.0546924i −0.00675962 0.00758447i
\(53\) 1.48414i 0.203863i 0.994791 + 0.101931i \(0.0325022\pi\)
−0.994791 + 0.101931i \(0.967498\pi\)
\(54\) 0.503453 + 1.32157i 0.0685112 + 0.179842i
\(55\) −8.32115 −1.12202
\(56\) −1.56351 + 3.01159i −0.208933 + 0.402441i
\(57\) −2.99893 −0.397218
\(58\) 0.660262 + 1.73319i 0.0866966 + 0.227579i
\(59\) 0.292402i 0.0380674i −0.999819 0.0190337i \(-0.993941\pi\)
0.999819 0.0190337i \(-0.00605899\pi\)
\(60\) −4.02710 + 3.58913i −0.519896 + 0.463355i
\(61\) 10.5914i 1.35609i −0.735021 0.678045i \(-0.762828\pi\)
0.735021 0.678045i \(-0.237172\pi\)
\(62\) 4.39457 1.67412i 0.558111 0.212614i
\(63\) −1.19970 −0.151148
\(64\) −4.60308 6.54306i −0.575385 0.817883i
\(65\) 0.0988003 0.0122547
\(66\) 4.07718 1.55321i 0.501867 0.191187i
\(67\) 10.7005i 1.30728i 0.756806 + 0.653640i \(0.226759\pi\)
−0.756806 + 0.653640i \(0.773241\pi\)
\(68\) −0.417001 + 0.371650i −0.0505688 + 0.0450692i
\(69\) 1.00000i 0.120386i
\(70\) −1.62908 4.27635i −0.194713 0.511121i
\(71\) −7.91699 −0.939574 −0.469787 0.882780i \(-0.655669\pi\)
−0.469787 + 0.882780i \(0.655669\pi\)
\(72\) 1.30325 2.51029i 0.153589 0.295840i
\(73\) 7.30232 0.854671 0.427336 0.904093i \(-0.359452\pi\)
0.427336 + 0.904093i \(0.359452\pi\)
\(74\) 0.485924 + 1.27555i 0.0564875 + 0.148280i
\(75\) 2.27484i 0.262676i
\(76\) 3.99066 + 4.47762i 0.457760 + 0.513618i
\(77\) 3.70121i 0.421793i
\(78\) −0.0484100 + 0.0184419i −0.00548136 + 0.00208813i
\(79\) −10.5602 −1.18811 −0.594055 0.804424i \(-0.702474\pi\)
−0.594055 + 0.804424i \(0.702474\pi\)
\(80\) 10.7176 + 1.23671i 1.19827 + 0.138269i
\(81\) 1.00000 0.111111
\(82\) −0.161820 + 0.0616457i −0.0178700 + 0.00680763i
\(83\) 13.9464i 1.53082i 0.643546 + 0.765408i \(0.277463\pi\)
−0.643546 + 0.765408i \(0.722537\pi\)
\(84\) 1.59643 + 1.79124i 0.174185 + 0.195440i
\(85\) 0.753301i 0.0817070i
\(86\) −3.24864 8.52769i −0.350310 0.919565i
\(87\) 1.31147 0.140604
\(88\) −7.74453 4.02068i −0.825569 0.428606i
\(89\) 2.48847 0.263778 0.131889 0.991265i \(-0.457896\pi\)
0.131889 + 0.991265i \(0.457896\pi\)
\(90\) 1.35791 + 3.56451i 0.143136 + 0.375733i
\(91\) 0.0439460i 0.00460679i
\(92\) 1.49307 1.33069i 0.155663 0.138734i
\(93\) 3.32528i 0.344815i
\(94\) 9.69261 3.69242i 0.999717 0.380844i
\(95\) −8.08869 −0.829883
\(96\) −5.48226 + 1.39457i −0.559531 + 0.142333i
\(97\) 12.2447 1.24326 0.621632 0.783309i \(-0.286470\pi\)
0.621632 + 0.783309i \(0.286470\pi\)
\(98\) 7.34885 2.79956i 0.742346 0.282798i
\(99\) 3.08512i 0.310066i
\(100\) −3.39649 + 3.02711i −0.339649 + 0.302711i
\(101\) 9.19144i 0.914582i −0.889317 0.457291i \(-0.848820\pi\)
0.889317 0.457291i \(-0.151180\pi\)
\(102\) 0.140610 + 0.369101i 0.0139224 + 0.0365465i
\(103\) 13.7228 1.35215 0.676076 0.736832i \(-0.263679\pi\)
0.676076 + 0.736832i \(0.263679\pi\)
\(104\) 0.0919539 + 0.0477391i 0.00901682 + 0.00468121i
\(105\) −3.23582 −0.315784
\(106\) −0.747197 1.96139i −0.0725741 0.190507i
\(107\) 11.6190i 1.12325i −0.827391 0.561627i \(-0.810176\pi\)
0.827391 0.561627i \(-0.189824\pi\)
\(108\) −1.33069 1.49307i −0.128046 0.143671i
\(109\) 4.28843i 0.410758i −0.978683 0.205379i \(-0.934157\pi\)
0.978683 0.205379i \(-0.0658426\pi\)
\(110\) 10.9969 4.18930i 1.04852 0.399434i
\(111\) 0.965182 0.0916111
\(112\) 0.550086 4.76717i 0.0519782 0.450455i
\(113\) 19.3075 1.81630 0.908148 0.418650i \(-0.137497\pi\)
0.908148 + 0.418650i \(0.137497\pi\)
\(114\) 3.96329 1.50982i 0.371196 0.141408i
\(115\) 2.69719i 0.251514i
\(116\) −1.74516 1.95811i −0.162034 0.181806i
\(117\) 0.0366308i 0.00338652i
\(118\) 0.147210 + 0.386428i 0.0135518 + 0.0355736i
\(119\) −0.335065 −0.0307154
\(120\) 3.51511 6.77072i 0.320885 0.618079i
\(121\) 1.48206 0.134733
\(122\) 5.33227 + 13.9972i 0.482761 + 1.26725i
\(123\) 0.122446i 0.0110406i
\(124\) −4.96488 + 4.42492i −0.445859 + 0.397370i
\(125\) 7.35028i 0.657429i
\(126\) 1.58548 0.603992i 0.141246 0.0538079i
\(127\) 19.3284 1.71512 0.857561 0.514382i \(-0.171979\pi\)
0.857561 + 0.514382i \(0.171979\pi\)
\(128\) 9.37739 + 6.32965i 0.828852 + 0.559468i
\(129\) −6.45272 −0.568130
\(130\) −0.130571 + 0.0497413i −0.0114518 + 0.00436260i
\(131\) 3.60148i 0.314663i 0.987546 + 0.157332i \(0.0502891\pi\)
−0.987546 + 0.157332i \(0.949711\pi\)
\(132\) −4.60630 + 4.10534i −0.400927 + 0.357324i
\(133\) 3.59782i 0.311971i
\(134\) −5.38722 14.1415i −0.465385 1.22164i
\(135\) 2.69719 0.232137
\(136\) 0.363986 0.701101i 0.0312115 0.0601189i
\(137\) 6.28115 0.536635 0.268317 0.963331i \(-0.413532\pi\)
0.268317 + 0.963331i \(0.413532\pi\)
\(138\) −0.503453 1.32157i −0.0428567 0.112499i
\(139\) 16.3829i 1.38958i 0.719213 + 0.694789i \(0.244502\pi\)
−0.719213 + 0.694789i \(0.755498\pi\)
\(140\) 4.30588 + 4.83131i 0.363913 + 0.408320i
\(141\) 7.33419i 0.617650i
\(142\) 10.4628 3.98583i 0.878021 0.334484i
\(143\) 0.113010 0.00945040
\(144\) −0.458519 + 3.97363i −0.0382100 + 0.331136i
\(145\) 3.53728 0.293755
\(146\) −9.65049 + 3.67637i −0.798680 + 0.304259i
\(147\) 5.56072i 0.458640i
\(148\) −1.28436 1.44109i −0.105574 0.118456i
\(149\) 2.75873i 0.226004i 0.993595 + 0.113002i \(0.0360466\pi\)
−0.993595 + 0.113002i \(0.963953\pi\)
\(150\) 1.14527 + 3.00635i 0.0935111 + 0.245467i
\(151\) 12.8704 1.04738 0.523691 0.851908i \(-0.324555\pi\)
0.523691 + 0.851908i \(0.324555\pi\)
\(152\) −7.52818 3.90836i −0.610616 0.317010i
\(153\) 0.279291 0.0225793
\(154\) −1.86339 4.89140i −0.150156 0.394160i
\(155\) 8.96891i 0.720400i
\(156\) 0.0546924 0.0487443i 0.00437890 0.00390267i
\(157\) 4.75395i 0.379407i −0.981841 0.189703i \(-0.939247\pi\)
0.981841 0.189703i \(-0.0607526\pi\)
\(158\) 13.9559 5.31654i 1.11027 0.422961i
\(159\) −1.48414 −0.117700
\(160\) −14.7867 + 3.76143i −1.16899 + 0.297367i
\(161\) 1.19970 0.0945496
\(162\) −1.32157 + 0.503453i −0.103832 + 0.0395550i
\(163\) 1.45694i 0.114116i −0.998371 0.0570581i \(-0.981828\pi\)
0.998371 0.0570581i \(-0.0181720\pi\)
\(164\) 0.182820 0.162938i 0.0142759 0.0127233i
\(165\) 8.32115i 0.647800i
\(166\) −7.02135 18.4311i −0.544962 1.43053i
\(167\) 17.9505 1.38905 0.694525 0.719468i \(-0.255614\pi\)
0.694525 + 0.719468i \(0.255614\pi\)
\(168\) −3.01159 1.56351i −0.232349 0.120627i
\(169\) 12.9987 0.999897
\(170\) 0.379252 + 0.995537i 0.0290873 + 0.0763542i
\(171\) 2.99893i 0.229334i
\(172\) 8.58658 + 9.63436i 0.654721 + 0.734613i
\(173\) 1.07325i 0.0815978i 0.999167 + 0.0407989i \(0.0129903\pi\)
−0.999167 + 0.0407989i \(0.987010\pi\)
\(174\) −1.73319 + 0.660262i −0.131393 + 0.0500543i
\(175\) −2.72912 −0.206302
\(176\) 12.2591 + 1.41459i 0.924066 + 0.106628i
\(177\) 0.292402 0.0219782
\(178\) −3.28868 + 1.25283i −0.246497 + 0.0939035i
\(179\) 7.19320i 0.537645i −0.963190 0.268822i \(-0.913366\pi\)
0.963190 0.268822i \(-0.0866345\pi\)
\(180\) −3.58913 4.02710i −0.267518 0.300162i
\(181\) 7.52438i 0.559283i −0.960105 0.279641i \(-0.909784\pi\)
0.960105 0.279641i \(-0.0902156\pi\)
\(182\) 0.0221247 + 0.0580775i 0.00163999 + 0.00430499i
\(183\) 10.5914 0.782938
\(184\) −1.30325 + 2.51029i −0.0960769 + 0.185061i
\(185\) 2.60328 0.191397
\(186\) 1.67412 + 4.39457i 0.122752 + 0.322226i
\(187\) 0.861645i 0.0630097i
\(188\) −10.9505 + 9.75955i −0.798645 + 0.711788i
\(189\) 1.19970i 0.0872653i
\(190\) 10.6897 4.07228i 0.775515 0.295434i
\(191\) −13.7860 −0.997521 −0.498760 0.866740i \(-0.666211\pi\)
−0.498760 + 0.866740i \(0.666211\pi\)
\(192\) 6.54306 4.60308i 0.472205 0.332199i
\(193\) −21.6089 −1.55544 −0.777720 0.628610i \(-0.783624\pi\)
−0.777720 + 0.628610i \(0.783624\pi\)
\(194\) −16.1822 + 6.16464i −1.16182 + 0.442596i
\(195\) 0.0988003i 0.00707524i
\(196\) −8.30255 + 7.39960i −0.593039 + 0.528543i
\(197\) 20.3261i 1.44818i −0.689707 0.724089i \(-0.742261\pi\)
0.689707 0.724089i \(-0.257739\pi\)
\(198\) 1.55321 + 4.07718i 0.110382 + 0.289753i
\(199\) 13.7154 0.972259 0.486129 0.873887i \(-0.338408\pi\)
0.486129 + 0.873887i \(0.338408\pi\)
\(200\) 2.96468 5.71049i 0.209635 0.403793i
\(201\) −10.7005 −0.754758
\(202\) 4.62746 + 12.1471i 0.325587 + 0.854666i
\(203\) 1.57337i 0.110429i
\(204\) −0.371650 0.417001i −0.0260207 0.0291959i
\(205\) 0.330260i 0.0230663i
\(206\) −18.1356 + 6.90880i −1.26357 + 0.481359i
\(207\) −1.00000 −0.0695048
\(208\) −0.145557 0.0167959i −0.0100926 0.00116459i
\(209\) −9.25206 −0.639978
\(210\) 4.27635 1.62908i 0.295096 0.112417i
\(211\) 17.5048i 1.20508i 0.798089 + 0.602539i \(0.205844\pi\)
−0.798089 + 0.602539i \(0.794156\pi\)
\(212\) 1.97494 + 2.21593i 0.135639 + 0.152191i
\(213\) 7.91699i 0.542463i
\(214\) 5.84963 + 15.3553i 0.399873 + 1.04967i
\(215\) −17.4042 −1.18696
\(216\) 2.51029 + 1.30325i 0.170803 + 0.0886749i
\(217\) −3.98934 −0.270814
\(218\) 2.15902 + 5.66745i 0.146228 + 0.383848i
\(219\) 7.30232i 0.493445i
\(220\) −12.4241 + 11.0729i −0.837630 + 0.746533i
\(221\) 0.0102307i 0.000688189i
\(222\) −1.27555 + 0.485924i −0.0856094 + 0.0326131i
\(223\) 19.7074 1.31970 0.659852 0.751396i \(-0.270619\pi\)
0.659852 + 0.751396i \(0.270619\pi\)
\(224\) 1.67307 + 6.57707i 0.111787 + 0.439449i
\(225\) 2.27484 0.151656
\(226\) −25.5161 + 9.72041i −1.69731 + 0.646592i
\(227\) 16.3574i 1.08568i 0.839836 + 0.542840i \(0.182651\pi\)
−0.839836 + 0.542840i \(0.817349\pi\)
\(228\) −4.47762 + 3.99066i −0.296538 + 0.264288i
\(229\) 9.50963i 0.628414i 0.949354 + 0.314207i \(0.101739\pi\)
−0.949354 + 0.314207i \(0.898261\pi\)
\(230\) −1.35791 3.56451i −0.0895378 0.235037i
\(231\) −3.70121 −0.243522
\(232\) 3.29216 + 1.70917i 0.216141 + 0.112213i
\(233\) −22.7838 −1.49262 −0.746308 0.665601i \(-0.768175\pi\)
−0.746308 + 0.665601i \(0.768175\pi\)
\(234\) −0.0184419 0.0484100i −0.00120558 0.00316466i
\(235\) 19.7817i 1.29042i
\(236\) −0.389096 0.436576i −0.0253280 0.0284187i
\(237\) 10.5602i 0.685956i
\(238\) 0.442811 0.168690i 0.0287032 0.0109345i
\(239\) −16.6155 −1.07477 −0.537385 0.843337i \(-0.680588\pi\)
−0.537385 + 0.843337i \(0.680588\pi\)
\(240\) −1.23671 + 10.7176i −0.0798296 + 0.691821i
\(241\) 6.31610 0.406856 0.203428 0.979090i \(-0.434792\pi\)
0.203428 + 0.979090i \(0.434792\pi\)
\(242\) −1.95864 + 0.746146i −0.125906 + 0.0479641i
\(243\) 1.00000i 0.0641500i
\(244\) −14.0939 15.8137i −0.902268 1.01237i
\(245\) 14.9983i 0.958208i
\(246\) −0.0616457 0.161820i −0.00393039 0.0103173i
\(247\) 0.109853 0.00698981
\(248\) 4.33367 8.34740i 0.275188 0.530061i
\(249\) −13.9464 −0.883817
\(250\) −3.70052 9.71388i −0.234042 0.614360i
\(251\) 20.7310i 1.30853i −0.756266 0.654264i \(-0.772979\pi\)
0.756266 0.654264i \(-0.227021\pi\)
\(252\) −1.79124 + 1.59643i −0.112837 + 0.100566i
\(253\) 3.08512i 0.193960i
\(254\) −25.5438 + 9.73096i −1.60276 + 0.610575i
\(255\) 0.753301 0.0471735
\(256\) −15.5795 3.64398i −0.973720 0.227748i
\(257\) 5.82477 0.363339 0.181670 0.983360i \(-0.441850\pi\)
0.181670 + 0.983360i \(0.441850\pi\)
\(258\) 8.52769 3.24864i 0.530911 0.202251i
\(259\) 1.15793i 0.0719502i
\(260\) 0.147516 0.131473i 0.00914854 0.00815359i
\(261\) 1.31147i 0.0811778i
\(262\) −1.81318 4.75960i −0.112018 0.294049i
\(263\) −18.1314 −1.11803 −0.559016 0.829157i \(-0.688821\pi\)
−0.559016 + 0.829157i \(0.688821\pi\)
\(264\) 4.02068 7.74453i 0.247456 0.476643i
\(265\) −4.00302 −0.245904
\(266\) −1.81133 4.75476i −0.111060 0.291533i
\(267\) 2.48847i 0.152292i
\(268\) 14.2391 + 15.9767i 0.869793 + 0.975930i
\(269\) 5.46914i 0.333459i −0.986003 0.166730i \(-0.946679\pi\)
0.986003 0.166730i \(-0.0533207\pi\)
\(270\) −3.56451 + 1.35791i −0.216929 + 0.0826397i
\(271\) 6.30219 0.382831 0.191415 0.981509i \(-0.438692\pi\)
0.191415 + 0.981509i \(0.438692\pi\)
\(272\) −0.128060 + 1.10980i −0.00776480 + 0.0672915i
\(273\) 0.0439460 0.00265973
\(274\) −8.30095 + 3.16226i −0.501479 + 0.191039i
\(275\) 7.01814i 0.423209i
\(276\) 1.33069 + 1.49307i 0.0800982 + 0.0898723i
\(277\) 24.5962i 1.47784i 0.673791 + 0.738922i \(0.264665\pi\)
−0.673791 + 0.738922i \(0.735335\pi\)
\(278\) −8.24801 21.6511i −0.494683 1.29854i
\(279\) 3.32528 0.199079
\(280\) −8.12284 4.21708i −0.485432 0.252019i
\(281\) 20.9976 1.25261 0.626306 0.779577i \(-0.284566\pi\)
0.626306 + 0.779577i \(0.284566\pi\)
\(282\) 3.69242 + 9.69261i 0.219880 + 0.577187i
\(283\) 6.64534i 0.395025i 0.980300 + 0.197512i \(0.0632862\pi\)
−0.980300 + 0.197512i \(0.936714\pi\)
\(284\) −11.8206 + 10.5351i −0.701425 + 0.625142i
\(285\) 8.08869i 0.479133i
\(286\) −0.149351 + 0.0568954i −0.00883129 + 0.00336429i
\(287\) 0.146898 0.00867113
\(288\) −1.39457 5.48226i −0.0821760 0.323045i
\(289\) −16.9220 −0.995412
\(290\) −4.67474 + 1.78085i −0.274510 + 0.104575i
\(291\) 12.2447i 0.717799i
\(292\) 10.9029 9.71713i 0.638042 0.568652i
\(293\) 23.5701i 1.37698i 0.725246 + 0.688489i \(0.241726\pi\)
−0.725246 + 0.688489i \(0.758274\pi\)
\(294\) 2.79956 + 7.34885i 0.163274 + 0.428594i
\(295\) 0.788663 0.0459177
\(296\) 2.42288 + 1.25787i 0.140827 + 0.0731124i
\(297\) 3.08512 0.179017
\(298\) −1.38889 3.64584i −0.0804562 0.211198i
\(299\) 0.0366308i 0.00211842i
\(300\) −3.02711 3.39649i −0.174770 0.196097i
\(301\) 7.74133i 0.446203i
\(302\) −17.0091 + 6.47966i −0.978766 + 0.372863i
\(303\) 9.19144 0.528034
\(304\) 11.9167 + 1.37507i 0.683467 + 0.0788656i
\(305\) 28.5670 1.63574
\(306\) −0.369101 + 0.140610i −0.0211001 + 0.00803813i
\(307\) 14.0635i 0.802648i −0.915936 0.401324i \(-0.868550\pi\)
0.915936 0.401324i \(-0.131450\pi\)
\(308\) 4.92518 + 5.52617i 0.280638 + 0.314883i
\(309\) 13.7228i 0.780665i
\(310\) 4.51542 + 11.8530i 0.256459 + 0.673205i
\(311\) 22.2815 1.26347 0.631734 0.775185i \(-0.282343\pi\)
0.631734 + 0.775185i \(0.282343\pi\)
\(312\) −0.0477391 + 0.0919539i −0.00270270 + 0.00520586i
\(313\) −18.3737 −1.03854 −0.519272 0.854609i \(-0.673797\pi\)
−0.519272 + 0.854609i \(0.673797\pi\)
\(314\) 2.39339 + 6.28266i 0.135067 + 0.354551i
\(315\) 3.23582i 0.182318i
\(316\) −15.7671 + 14.0523i −0.886966 + 0.790504i
\(317\) 6.09283i 0.342207i −0.985253 0.171104i \(-0.945267\pi\)
0.985253 0.171104i \(-0.0547333\pi\)
\(318\) 1.96139 0.747197i 0.109990 0.0419007i
\(319\) 4.04603 0.226534
\(320\) 17.6479 12.4154i 0.986547 0.694041i
\(321\) 11.6190 0.648511
\(322\) −1.58548 + 0.603992i −0.0883555 + 0.0336592i
\(323\) 0.837575i 0.0466039i
\(324\) 1.49307 1.33069i 0.0829484 0.0739273i
\(325\) 0.0833291i 0.00462227i
\(326\) 0.733500 + 1.92544i 0.0406248 + 0.106640i
\(327\) 4.28843 0.237151
\(328\) −0.159578 + 0.307374i −0.00881119 + 0.0169719i
\(329\) −8.79883 −0.485095
\(330\) 4.18930 + 10.9969i 0.230614 + 0.605362i
\(331\) 0.142627i 0.00783948i 0.999992 + 0.00391974i \(0.00124769\pi\)
−0.999992 + 0.00391974i \(0.998752\pi\)
\(332\) 18.5583 + 20.8229i 1.01852 + 1.14281i
\(333\) 0.965182i 0.0528917i
\(334\) −23.7228 + 9.03723i −1.29805 + 0.494495i
\(335\) −28.8614 −1.57687
\(336\) 4.76717 + 0.550086i 0.260070 + 0.0300096i
\(337\) 18.4038 1.00252 0.501261 0.865296i \(-0.332870\pi\)
0.501261 + 0.865296i \(0.332870\pi\)
\(338\) −17.1786 + 6.54421i −0.934391 + 0.355958i
\(339\) 19.3075i 1.04864i
\(340\) −1.00241 1.12473i −0.0543634 0.0609971i
\(341\) 10.2589i 0.555549i
\(342\) 1.50982 + 3.96329i 0.0816418 + 0.214310i
\(343\) −15.0691 −0.813655
\(344\) −16.1982 8.40951i −0.873347 0.453410i
\(345\) −2.69719 −0.145212
\(346\) −0.540332 1.41837i −0.0290484 0.0762522i
\(347\) 19.1563i 1.02837i −0.857680 0.514183i \(-0.828095\pi\)
0.857680 0.514183i \(-0.171905\pi\)
\(348\) 1.95811 1.74516i 0.104966 0.0935503i
\(349\) 28.3823i 1.51927i 0.650351 + 0.759634i \(0.274622\pi\)
−0.650351 + 0.759634i \(0.725378\pi\)
\(350\) 3.60671 1.37398i 0.192787 0.0734425i
\(351\) −0.0366308 −0.00195521
\(352\) −16.9134 + 4.30242i −0.901488 + 0.229320i
\(353\) 30.3696 1.61641 0.808205 0.588901i \(-0.200439\pi\)
0.808205 + 0.588901i \(0.200439\pi\)
\(354\) −0.386428 + 0.147210i −0.0205384 + 0.00782414i
\(355\) 21.3536i 1.13333i
\(356\) 3.71547 3.31139i 0.196919 0.175503i
\(357\) 0.335065i 0.0177335i
\(358\) 3.62144 + 9.50628i 0.191399 + 0.502423i
\(359\) −6.93504 −0.366018 −0.183009 0.983111i \(-0.558584\pi\)
−0.183009 + 0.983111i \(0.558584\pi\)
\(360\) 6.77072 + 3.51511i 0.356848 + 0.185263i
\(361\) 10.0064 0.526653
\(362\) 3.78817 + 9.94396i 0.199102 + 0.522643i
\(363\) 1.48206i 0.0777879i
\(364\) −0.0584786 0.0656145i −0.00306511 0.00343913i
\(365\) 19.6957i 1.03092i
\(366\) −13.9972 + 5.33227i −0.731646 + 0.278722i
\(367\) 14.5367 0.758811 0.379405 0.925231i \(-0.376129\pi\)
0.379405 + 0.925231i \(0.376129\pi\)
\(368\) 0.458519 3.97363i 0.0239020 0.207140i
\(369\) −0.122446 −0.00637427
\(370\) −3.44041 + 1.31063i −0.178858 + 0.0681364i
\(371\) 1.78053i 0.0924404i
\(372\) −4.42492 4.96488i −0.229421 0.257417i
\(373\) 15.1546i 0.784674i 0.919821 + 0.392337i \(0.128333\pi\)
−0.919821 + 0.392337i \(0.871667\pi\)
\(374\) 0.433798 + 1.13872i 0.0224311 + 0.0588818i
\(375\) −7.35028 −0.379567
\(376\) 9.55829 18.4109i 0.492931 0.949471i
\(377\) −0.0480401 −0.00247419
\(378\) 0.603992 + 1.58548i 0.0310660 + 0.0815484i
\(379\) 20.6078i 1.05855i −0.848450 0.529275i \(-0.822464\pi\)
0.848450 0.529275i \(-0.177536\pi\)
\(380\) −12.0770 + 10.7636i −0.619537 + 0.552159i
\(381\) 19.3284i 0.990226i
\(382\) 18.2191 6.94061i 0.932171 0.355112i
\(383\) −3.98900 −0.203829 −0.101914 0.994793i \(-0.532497\pi\)
−0.101914 + 0.994793i \(0.532497\pi\)
\(384\) −6.32965 + 9.37739i −0.323009 + 0.478538i
\(385\) −9.98288 −0.508775
\(386\) 28.5575 10.8790i 1.45354 0.553729i
\(387\) 6.45272i 0.328010i
\(388\) 18.2822 16.2940i 0.928140 0.827200i
\(389\) 36.8327i 1.86749i −0.357934 0.933747i \(-0.616519\pi\)
0.357934 0.933747i \(-0.383481\pi\)
\(390\) −0.0497413 0.130571i −0.00251875 0.00661172i
\(391\) −0.279291 −0.0141244
\(392\) 7.24701 13.9590i 0.366029 0.705036i
\(393\) −3.60148 −0.181671
\(394\) 10.2333 + 26.8623i 0.515544 + 1.35330i
\(395\) 28.4827i 1.43312i
\(396\) −4.10534 4.60630i −0.206301 0.231475i
\(397\) 5.18791i 0.260374i −0.991489 0.130187i \(-0.958442\pi\)
0.991489 0.130187i \(-0.0415577\pi\)
\(398\) −18.1258 + 6.90506i −0.908564 + 0.346119i
\(399\) −3.59782 −0.180116
\(400\) −1.04306 + 9.03937i −0.0521528 + 0.451968i
\(401\) 13.1824 0.658295 0.329148 0.944278i \(-0.393239\pi\)
0.329148 + 0.944278i \(0.393239\pi\)
\(402\) 14.1415 5.38722i 0.705312 0.268690i
\(403\) 0.121808i 0.00606767i
\(404\) −12.2310 13.7235i −0.608514 0.682768i
\(405\) 2.69719i 0.134024i
\(406\) 0.792116 + 2.07931i 0.0393121 + 0.103194i
\(407\) 2.97770 0.147599
\(408\) 0.701101 + 0.363986i 0.0347096 + 0.0180200i
\(409\) −40.0884 −1.98224 −0.991122 0.132958i \(-0.957553\pi\)
−0.991122 + 0.132958i \(0.957553\pi\)
\(410\) −0.166270 0.436460i −0.00821150 0.0215552i
\(411\) 6.28115i 0.309826i
\(412\) 20.4892 18.2609i 1.00943 0.899648i
\(413\) 0.350794i 0.0172615i
\(414\) 1.32157 0.503453i 0.0649514 0.0247434i
\(415\) −37.6161 −1.84650
\(416\) 0.200820 0.0510844i 0.00984600 0.00250462i
\(417\) −16.3829 −0.802274
\(418\) 12.2272 4.65797i 0.598052 0.227829i
\(419\) 4.46330i 0.218046i 0.994039 + 0.109023i \(0.0347723\pi\)
−0.994039 + 0.109023i \(0.965228\pi\)
\(420\) −4.83131 + 4.30588i −0.235744 + 0.210105i
\(421\) 26.0758i 1.27086i −0.772160 0.635428i \(-0.780824\pi\)
0.772160 0.635428i \(-0.219176\pi\)
\(422\) −8.81283 23.1337i −0.429002 1.12613i
\(423\) 7.33419 0.356601
\(424\) −3.72563 1.93421i −0.180932 0.0939336i
\(425\) 0.635341 0.0308186
\(426\) 3.98583 + 10.4628i 0.193114 + 0.506925i
\(427\) 12.7065i 0.614910i
\(428\) −15.4613 17.3480i −0.747352 0.838548i
\(429\) 0.113010i 0.00545619i
\(430\) 23.0008 8.76220i 1.10920 0.422551i
\(431\) 16.5454 0.796965 0.398483 0.917176i \(-0.369537\pi\)
0.398483 + 0.917176i \(0.369537\pi\)
\(432\) −3.97363 0.458519i −0.191182 0.0220605i
\(433\) 17.3279 0.832725 0.416363 0.909199i \(-0.363305\pi\)
0.416363 + 0.909199i \(0.363305\pi\)
\(434\) 5.27217 2.00844i 0.253072 0.0964084i
\(435\) 3.53728i 0.169599i
\(436\) −5.70658 6.40294i −0.273296 0.306645i
\(437\) 2.99893i 0.143458i
\(438\) −3.67637 9.65049i −0.175664 0.461118i
\(439\) −0.522509 −0.0249380 −0.0124690 0.999922i \(-0.503969\pi\)
−0.0124690 + 0.999922i \(0.503969\pi\)
\(440\) 10.8445 20.8885i 0.516993 0.995818i
\(441\) 5.56072 0.264796
\(442\) −0.00515066 0.0135205i −0.000244992 0.000643104i
\(443\) 29.8300i 1.41726i −0.705578 0.708632i \(-0.749313\pi\)
0.705578 0.708632i \(-0.250687\pi\)
\(444\) 1.44109 1.28436i 0.0683909 0.0609530i
\(445\) 6.71189i 0.318174i
\(446\) −26.0446 + 9.92173i −1.23325 + 0.469808i
\(447\) −2.75873 −0.130483
\(448\) −5.52231 7.84971i −0.260905 0.370864i
\(449\) −18.3537 −0.866167 −0.433083 0.901354i \(-0.642574\pi\)
−0.433083 + 0.901354i \(0.642574\pi\)
\(450\) −3.00635 + 1.14527i −0.141720 + 0.0539887i
\(451\) 0.377760i 0.0177880i
\(452\) 28.8274 25.6923i 1.35593 1.20846i
\(453\) 12.8704i 0.604706i
\(454\) −8.23518 21.6174i −0.386496 1.01455i
\(455\) 0.118531 0.00555681
\(456\) 3.90836 7.52818i 0.183026 0.352539i
\(457\) 2.65227 0.124068 0.0620340 0.998074i \(-0.480241\pi\)
0.0620340 + 0.998074i \(0.480241\pi\)
\(458\) −4.78765 12.5676i −0.223712 0.587245i
\(459\) 0.279291i 0.0130362i
\(460\) 3.58913 + 4.02710i 0.167344 + 0.187764i
\(461\) 16.7855i 0.781780i 0.920437 + 0.390890i \(0.127833\pi\)
−0.920437 + 0.390890i \(0.872167\pi\)
\(462\) 4.89140 1.86339i 0.227568 0.0866926i
\(463\) 5.48971 0.255128 0.127564 0.991830i \(-0.459284\pi\)
0.127564 + 0.991830i \(0.459284\pi\)
\(464\) −5.21129 0.601333i −0.241928 0.0279162i
\(465\) 8.96891 0.415923
\(466\) 30.1103 11.4706i 1.39483 0.531364i
\(467\) 30.4068i 1.40706i −0.710665 0.703530i \(-0.751606\pi\)
0.710665 0.703530i \(-0.248394\pi\)
\(468\) 0.0487443 + 0.0546924i 0.00225321 + 0.00252816i
\(469\) 12.8374i 0.592778i
\(470\) 9.95916 + 26.1428i 0.459382 + 1.20588i
\(471\) 4.75395 0.219050
\(472\) 0.734012 + 0.381072i 0.0337856 + 0.0175403i
\(473\) −19.9074 −0.915343
\(474\) 5.31654 + 13.9559i 0.244197 + 0.641017i
\(475\) 6.82208i 0.313019i
\(476\) −0.500276 + 0.445869i −0.0229301 + 0.0204364i
\(477\) 1.48414i 0.0679543i
\(478\) 21.9585 8.36514i 1.00436 0.382612i
\(479\) 17.4337 0.796566 0.398283 0.917263i \(-0.369606\pi\)
0.398283 + 0.917263i \(0.369606\pi\)
\(480\) −3.76143 14.7867i −0.171685 0.674917i
\(481\) −0.0353554 −0.00161207
\(482\) −8.34714 + 3.17986i −0.380202 + 0.144839i
\(483\) 1.19970i 0.0545882i
\(484\) 2.21282 1.97216i 0.100583 0.0896437i
\(485\) 33.0264i 1.49965i
\(486\) −0.503453 1.32157i −0.0228371 0.0599474i
\(487\) −6.63631 −0.300720 −0.150360 0.988631i \(-0.548043\pi\)
−0.150360 + 0.988631i \(0.548043\pi\)
\(488\) 26.5874 + 13.8032i 1.20356 + 0.624843i
\(489\) 1.45694 0.0658851
\(490\) 7.55095 + 19.8213i 0.341117 + 0.895433i
\(491\) 11.8437i 0.534500i 0.963627 + 0.267250i \(0.0861149\pi\)
−0.963627 + 0.267250i \(0.913885\pi\)
\(492\) 0.162938 + 0.182820i 0.00734580 + 0.00824217i
\(493\) 0.366281i 0.0164965i
\(494\) −0.145178 + 0.0553060i −0.00653189 + 0.00248833i
\(495\) 8.32115 0.374008
\(496\) −1.52470 + 13.2134i −0.0684613 + 0.593301i
\(497\) −9.49802 −0.426044
\(498\) 18.4311 7.02135i 0.825916 0.314634i
\(499\) 17.4583i 0.781540i 0.920488 + 0.390770i \(0.127791\pi\)
−0.920488 + 0.390770i \(0.872209\pi\)
\(500\) 9.78096 + 10.9745i 0.437418 + 0.490794i
\(501\) 17.9505i 0.801969i
\(502\) 10.4371 + 27.3973i 0.465829 + 1.22280i
\(503\) −25.0051 −1.11492 −0.557460 0.830204i \(-0.688224\pi\)
−0.557460 + 0.830204i \(0.688224\pi\)
\(504\) 1.56351 3.01159i 0.0696442 0.134147i
\(505\) 24.7911 1.10319
\(506\) −1.55321 4.07718i −0.0690486 0.181253i
\(507\) 12.9987i 0.577291i
\(508\) 28.8587 25.7202i 1.28040 1.14115i
\(509\) 33.7255i 1.49485i 0.664344 + 0.747427i \(0.268711\pi\)
−0.664344 + 0.747427i \(0.731289\pi\)
\(510\) −0.995537 + 0.379252i −0.0440831 + 0.0167935i
\(511\) 8.76059 0.387546
\(512\) 22.4239 3.02780i 0.991007 0.133811i
\(513\) 2.99893 0.132406
\(514\) −7.69782 + 2.93250i −0.339536 + 0.129347i
\(515\) 37.0131i 1.63099i
\(516\) −9.63436 + 8.58658i −0.424129 + 0.378003i
\(517\) 22.6268i 0.995127i
\(518\) 0.582963 + 1.53028i 0.0256139 + 0.0672366i
\(519\) −1.07325 −0.0471105
\(520\) −0.128762 + 0.248017i −0.00564657 + 0.0108763i
\(521\) 24.1789 1.05930 0.529649 0.848217i \(-0.322324\pi\)
0.529649 + 0.848217i \(0.322324\pi\)
\(522\) −0.660262 1.73319i −0.0288989 0.0758597i
\(523\) 24.3169i 1.06331i −0.846962 0.531653i \(-0.821571\pi\)
0.846962 0.531653i \(-0.178429\pi\)
\(524\) 4.79246 + 5.37727i 0.209360 + 0.234907i
\(525\) 2.72912i 0.119109i
\(526\) 23.9619 9.12832i 1.04479 0.398014i
\(527\) 0.928721 0.0404557
\(528\) −1.41459 + 12.2591i −0.0615619 + 0.533510i
\(529\) 1.00000 0.0434783
\(530\) 5.29025 2.01533i 0.229794 0.0875404i
\(531\) 0.292402i 0.0126891i
\(532\) 4.78759 + 5.37180i 0.207568 + 0.232897i
\(533\) 0.00448529i 0.000194280i
\(534\) −1.25283 3.28868i −0.0542152 0.142315i
\(535\) 31.3387 1.35489
\(536\) −26.8614 13.9455i −1.16024 0.602353i
\(537\) 7.19320 0.310409
\(538\) 2.75345 + 7.22782i 0.118710 + 0.311614i
\(539\) 17.1555i 0.738938i
\(540\) 4.02710 3.58913i 0.173299 0.154452i
\(541\) 43.9134i 1.88798i −0.329969 0.943992i \(-0.607038\pi\)
0.329969 0.943992i \(-0.392962\pi\)
\(542\) −8.32875 + 3.17285i −0.357751 + 0.136286i
\(543\) 7.52438 0.322902
\(544\) −0.389492 1.53115i −0.0166993 0.0656473i
\(545\) 11.5667 0.495464
\(546\) −0.0580775 + 0.0221247i −0.00248549 + 0.000946851i
\(547\) 41.9302i 1.79280i 0.443242 + 0.896402i \(0.353828\pi\)
−0.443242 + 0.896402i \(0.646172\pi\)
\(548\) 9.37820 8.35827i 0.400617 0.357048i
\(549\) 10.5914i 0.452030i
\(550\) 3.53330 + 9.27493i 0.150660 + 0.395484i
\(551\) 3.93300 0.167552
\(552\) −2.51029 1.30325i −0.106845 0.0554700i
\(553\) −12.6690 −0.538741
\(554\) −12.3830 32.5055i −0.526105 1.38103i
\(555\) 2.60328i 0.110503i
\(556\) 21.8006 + 24.4608i 0.924550 + 1.03737i
\(557\) 39.4544i 1.67174i 0.548930 + 0.835868i \(0.315035\pi\)
−0.548930 + 0.835868i \(0.684965\pi\)
\(558\) −4.39457 + 1.67412i −0.186037 + 0.0708712i
\(559\) 0.236368 0.00999732
\(560\) 12.8580 + 1.48369i 0.543348 + 0.0626972i
\(561\) 0.861645 0.0363787
\(562\) −27.7497 + 10.5713i −1.17055 + 0.445923i
\(563\) 16.4558i 0.693529i 0.937952 + 0.346764i \(0.112720\pi\)
−0.937952 + 0.346764i \(0.887280\pi\)
\(564\) −9.75955 10.9505i −0.410951 0.461098i
\(565\) 52.0760i 2.19085i
\(566\) −3.34562 8.78225i −0.140627 0.369146i
\(567\) 1.19970 0.0503827
\(568\) 10.3178 19.8739i 0.432926 0.833891i
\(569\) −41.2300 −1.72845 −0.864225 0.503106i \(-0.832191\pi\)
−0.864225 + 0.503106i \(0.832191\pi\)
\(570\) 4.07228 + 10.6897i 0.170569 + 0.447744i
\(571\) 23.3120i 0.975575i −0.872962 0.487788i \(-0.837804\pi\)
0.872962 0.487788i \(-0.162196\pi\)
\(572\) 0.168732 0.150382i 0.00705506 0.00628778i
\(573\) 13.7860i 0.575919i
\(574\) −0.194136 + 0.0739563i −0.00810307 + 0.00308688i
\(575\) −2.27484 −0.0948672
\(576\) 4.60308 + 6.54306i 0.191795 + 0.272628i
\(577\) −22.4141 −0.933112 −0.466556 0.884492i \(-0.654505\pi\)
−0.466556 + 0.884492i \(0.654505\pi\)
\(578\) 22.3635 8.51943i 0.930200 0.354361i
\(579\) 21.6089i 0.898034i
\(580\) 5.28141 4.70703i 0.219298 0.195449i
\(581\) 16.7315i 0.694139i
\(582\) −6.16464 16.1822i −0.255533 0.670774i
\(583\) −4.57876 −0.189633
\(584\) −9.51674 + 18.3309i −0.393806 + 0.758538i
\(585\) −0.0988003 −0.00408489
\(586\) −11.8664 31.1494i −0.490197 1.28677i
\(587\) 0.794893i 0.0328087i −0.999865 0.0164044i \(-0.994778\pi\)
0.999865 0.0164044i \(-0.00522191\pi\)
\(588\) −7.39960 8.30255i −0.305154 0.342391i
\(589\) 9.97229i 0.410901i
\(590\) −1.04227 + 0.397054i −0.0429095 + 0.0163465i
\(591\) 20.3261 0.836106
\(592\) −3.83528 0.442555i −0.157629 0.0181889i
\(593\) −2.49895 −0.102620 −0.0513099 0.998683i \(-0.516340\pi\)
−0.0513099 + 0.998683i \(0.516340\pi\)
\(594\) −4.07718 + 1.55321i −0.167289 + 0.0637290i
\(595\) 0.903735i 0.0370495i
\(596\) 3.67102 + 4.11898i 0.150371 + 0.168720i
\(597\) 13.7154i 0.561334i
\(598\) 0.0184419 + 0.0484100i 0.000754145 + 0.00197963i
\(599\) −24.7897 −1.01288 −0.506440 0.862275i \(-0.669039\pi\)
−0.506440 + 0.862275i \(0.669039\pi\)
\(600\) 5.71049 + 2.96468i 0.233130 + 0.121033i
\(601\) 13.5250 0.551695 0.275848 0.961201i \(-0.411042\pi\)
0.275848 + 0.961201i \(0.411042\pi\)
\(602\) −3.89739 10.2307i −0.158846 0.416971i
\(603\) 10.7005i 0.435760i
\(604\) 19.2165 17.1266i 0.781907 0.696871i
\(605\) 3.99739i 0.162517i
\(606\) −12.1471 + 4.62746i −0.493442 + 0.187978i
\(607\) 2.33718 0.0948633 0.0474317 0.998874i \(-0.484896\pi\)
0.0474317 + 0.998874i \(0.484896\pi\)
\(608\) −16.4409 + 4.18223i −0.666768 + 0.169612i
\(609\) 1.57337 0.0637561
\(610\) −37.7532 + 14.3821i −1.52858 + 0.582316i
\(611\) 0.268658i 0.0108687i
\(612\) 0.417001 0.371650i 0.0168563 0.0150231i
\(613\) 35.5405i 1.43547i −0.696317 0.717734i \(-0.745179\pi\)
0.696317 0.717734i \(-0.254821\pi\)
\(614\) 7.08032 + 18.5859i 0.285739 + 0.750065i
\(615\) −0.330260 −0.0133174
\(616\) −9.29111 4.82361i −0.374349 0.194349i
\(617\) 32.8959 1.32434 0.662170 0.749354i \(-0.269636\pi\)
0.662170 + 0.749354i \(0.269636\pi\)
\(618\) −6.90880 18.1356i −0.277913 0.729522i
\(619\) 6.53413i 0.262629i 0.991341 + 0.131315i \(0.0419198\pi\)
−0.991341 + 0.131315i \(0.958080\pi\)
\(620\) −11.9349 13.3912i −0.479315 0.537804i
\(621\) 1.00000i 0.0401286i
\(622\) −29.4465 + 11.2177i −1.18070 + 0.449788i
\(623\) 2.98542 0.119608
\(624\) 0.0167959 0.145557i 0.000672376 0.00582696i
\(625\) −31.1993 −1.24797
\(626\) 24.2821 9.25030i 0.970507 0.369716i
\(627\) 9.25206i 0.369492i
\(628\) −6.32604 7.09798i −0.252437 0.283240i
\(629\) 0.269567i 0.0107483i
\(630\) 1.62908 + 4.27635i 0.0649042 + 0.170374i
\(631\) −36.3203 −1.44589 −0.722945 0.690906i \(-0.757212\pi\)
−0.722945 + 0.690906i \(0.757212\pi\)
\(632\) 13.7625 26.5090i 0.547444 1.05447i
\(633\) −17.5048 −0.695752
\(634\) 3.06745 + 8.05207i 0.121824 + 0.319789i
\(635\) 52.1325i 2.06882i
\(636\) −2.21593 + 1.97494i −0.0878674 + 0.0783114i
\(637\) 0.203694i 0.00807064i
\(638\) −5.34709 + 2.03698i −0.211693 + 0.0806450i
\(639\) 7.91699 0.313191
\(640\) −17.0723 + 25.2926i −0.674841 + 0.999778i
\(641\) −26.1925 −1.03454 −0.517271 0.855822i \(-0.673052\pi\)
−0.517271 + 0.855822i \(0.673052\pi\)
\(642\) −15.3553 + 5.84963i −0.606025 + 0.230867i
\(643\) 17.6245i 0.695041i −0.937672 0.347520i \(-0.887024\pi\)
0.937672 0.347520i \(-0.112976\pi\)
\(644\) 1.79124 1.59643i 0.0705846 0.0629082i
\(645\) 17.4042i 0.685290i
\(646\) 0.421680 + 1.10691i 0.0165908 + 0.0435508i
\(647\) 32.6508 1.28364 0.641818 0.766857i \(-0.278180\pi\)
0.641818 + 0.766857i \(0.278180\pi\)
\(648\) −1.30325 + 2.51029i −0.0511965 + 0.0986134i
\(649\) 0.902093 0.0354102
\(650\) −0.0419523 0.110125i −0.00164550 0.00431945i
\(651\) 3.98934i 0.156354i
\(652\) −1.93874 2.17531i −0.0759268 0.0851918i
\(653\) 18.5941i 0.727644i 0.931468 + 0.363822i \(0.118528\pi\)
−0.931468 + 0.363822i \(0.881472\pi\)
\(654\) −5.66745 + 2.15902i −0.221615 + 0.0844245i
\(655\) −9.71389 −0.379553
\(656\) 0.0561438 0.486555i 0.00219205 0.0189968i
\(657\) −7.30232 −0.284890
\(658\) 11.6282 4.42980i 0.453316 0.172691i
\(659\) 18.8820i 0.735540i −0.929917 0.367770i \(-0.880121\pi\)
0.929917 0.367770i \(-0.119879\pi\)
\(660\) −11.0729 12.4241i −0.431011 0.483606i
\(661\) 21.1981i 0.824509i −0.911069 0.412254i \(-0.864742\pi\)
0.911069 0.412254i \(-0.135258\pi\)
\(662\) −0.0718058 0.188491i −0.00279081 0.00732589i
\(663\) −0.0102307 −0.000397326
\(664\) −35.0094 18.1756i −1.35863 0.705352i
\(665\) −9.70401 −0.376305
\(666\) −0.485924 1.27555i −0.0188292 0.0494266i
\(667\) 1.31147i 0.0507802i
\(668\) 26.8014 23.8866i 1.03698 0.924199i
\(669\) 19.7074i 0.761931i
\(670\) 38.1422 14.5303i 1.47356 0.561356i
\(671\) 32.6757 1.26143
\(672\) −6.57707 + 1.67307i −0.253716 + 0.0645401i
\(673\) −43.9854 −1.69551 −0.847756 0.530387i \(-0.822047\pi\)
−0.847756 + 0.530387i \(0.822047\pi\)
\(674\) −24.3219 + 9.26546i −0.936844 + 0.356892i
\(675\) 2.27484i 0.0875585i
\(676\) 19.4079 17.2972i 0.746458 0.665277i
\(677\) 20.3589i 0.782455i 0.920294 + 0.391228i \(0.127949\pi\)
−0.920294 + 0.391228i \(0.872051\pi\)
\(678\) −9.72041 25.5161i −0.373310 0.979940i
\(679\) 14.6900 0.563751
\(680\) 1.89100 + 0.981740i 0.0725166 + 0.0376480i
\(681\) −16.3574 −0.626817
\(682\) 5.16486 + 13.5578i 0.197773 + 0.519154i
\(683\) 22.8765i 0.875345i 0.899134 + 0.437673i \(0.144197\pi\)
−0.899134 + 0.437673i \(0.855803\pi\)
\(684\) −3.99066 4.47762i −0.152587 0.171206i
\(685\) 16.9415i 0.647300i
\(686\) 19.9148 7.58658i 0.760351 0.289657i
\(687\) −9.50963 −0.362815
\(688\) 25.6407 + 2.95870i 0.977544 + 0.112799i
\(689\) 0.0543654 0.00207116
\(690\) 3.56451 1.35791i 0.135699 0.0516947i
\(691\) 38.6280i 1.46948i 0.678350 + 0.734739i \(0.262695\pi\)
−0.678350 + 0.734739i \(0.737305\pi\)
\(692\) 1.42817 + 1.60244i 0.0542908 + 0.0609157i
\(693\) 3.70121i 0.140598i
\(694\) 9.64432 + 25.3164i 0.366093 + 0.960996i
\(695\) −44.1878 −1.67614
\(696\) −1.70917 + 3.29216i −0.0647859 + 0.124789i
\(697\) −0.0341980 −0.00129534
\(698\) −14.2891 37.5090i −0.540852 1.41974i
\(699\) 22.7838i 0.861762i
\(700\) −4.07477 + 3.63162i −0.154012 + 0.137262i
\(701\) 19.3933i 0.732476i −0.930521 0.366238i \(-0.880646\pi\)
0.930521 0.366238i \(-0.119354\pi\)
\(702\) 0.0484100 0.0184419i 0.00182712 0.000696044i
\(703\) 2.89452 0.109169
\(704\) 20.1861 14.2010i 0.760793 0.535222i
\(705\) 19.7817 0.745022
\(706\) −40.1354 + 15.2897i −1.51052 + 0.575434i
\(707\) 11.0270i 0.414712i
\(708\) 0.436576 0.389096i 0.0164075 0.0146231i
\(709\) 4.08674i 0.153481i −0.997051 0.0767404i \(-0.975549\pi\)
0.997051 0.0767404i \(-0.0244513\pi\)
\(710\) 10.7505 + 28.2202i 0.403461 + 1.05909i
\(711\) 10.5602 0.396037
\(712\) −3.24310 + 6.24678i −0.121540 + 0.234108i
\(713\) −3.32528 −0.124533
\(714\) 0.168690 + 0.442811i 0.00631305 + 0.0165718i
\(715\) 0.304810i 0.0113993i
\(716\) −9.57193 10.7400i −0.357720 0.401371i
\(717\) 16.6155i 0.620518i
\(718\) 9.16511 3.49147i 0.342039 0.130300i
\(719\) 41.6385 1.55286 0.776428 0.630206i \(-0.217030\pi\)
0.776428 + 0.630206i \(0.217030\pi\)
\(720\) −10.7176 1.23671i −0.399423 0.0460896i
\(721\) 16.4633 0.613125
\(722\) −13.2241 + 5.03775i −0.492150 + 0.187486i
\(723\) 6.31610i 0.234898i
\(724\) −10.0126 11.2344i −0.372116 0.417524i
\(725\) 2.98337i 0.110800i
\(726\) −0.746146 1.95864i −0.0276921 0.0726918i
\(727\) −49.0589 −1.81950 −0.909748 0.415162i \(-0.863725\pi\)
−0.909748 + 0.415162i \(0.863725\pi\)
\(728\) 0.110317 + 0.0572726i 0.00408862 + 0.00212267i
\(729\) −1.00000 −0.0370370
\(730\) −9.91587 26.0292i −0.367003 0.963384i
\(731\) 1.80219i 0.0666563i
\(732\) 15.8137 14.0939i 0.584491 0.520925i
\(733\) 16.3492i 0.603871i −0.953328 0.301936i \(-0.902367\pi\)
0.953328 0.301936i \(-0.0976328\pi\)
\(734\) −19.2112 + 7.31855i −0.709099 + 0.270133i
\(735\) 14.9983 0.553221
\(736\) 1.39457 + 5.48226i 0.0514047 + 0.202079i
\(737\) −33.0124 −1.21603
\(738\) 0.161820 0.0616457i 0.00595668 0.00226921i
\(739\) 33.0831i 1.21698i 0.793560 + 0.608492i \(0.208225\pi\)
−0.793560 + 0.608492i \(0.791775\pi\)
\(740\) 3.88688 3.46416i 0.142885 0.127345i
\(741\) 0.109853i 0.00403557i
\(742\) −0.896412 2.35308i −0.0329083 0.0863844i
\(743\) 9.15454 0.335847 0.167924 0.985800i \(-0.446294\pi\)
0.167924 + 0.985800i \(0.446294\pi\)
\(744\) 8.34740 + 4.33367i 0.306031 + 0.158880i
\(745\) −7.44082 −0.272610
\(746\) −7.62962 20.0278i −0.279340 0.733269i
\(747\) 13.9464i 0.510272i
\(748\) −1.14658 1.28650i −0.0419233 0.0470390i
\(749\) 13.9393i 0.509333i
\(750\) 9.71388 3.70052i 0.354701 0.135124i
\(751\) 6.15690 0.224669 0.112334 0.993670i \(-0.464167\pi\)
0.112334 + 0.993670i \(0.464167\pi\)
\(752\) −3.36287 + 29.1434i −0.122631 + 1.06275i
\(753\) 20.7310 0.755479
\(754\) 0.0634882 0.0241859i 0.00231210 0.000880800i
\(755\) 34.7140i 1.26337i
\(756\) −1.59643 1.79124i −0.0580616 0.0651467i
\(757\) 8.78191i 0.319184i 0.987183 + 0.159592i \(0.0510178\pi\)
−0.987183 + 0.159592i \(0.948982\pi\)
\(758\) 10.3750 + 27.2345i 0.376839 + 0.989203i
\(759\) −3.08512 −0.111983
\(760\) 10.5416 20.3049i 0.382384 0.736538i
\(761\) −18.6171 −0.674870 −0.337435 0.941349i \(-0.609559\pi\)
−0.337435 + 0.941349i \(0.609559\pi\)
\(762\) −9.73096 25.5438i −0.352515 0.925354i
\(763\) 5.14484i 0.186256i
\(764\) −20.5835 + 18.3449i −0.744684 + 0.663696i
\(765\) 0.753301i 0.0272357i
\(766\) 5.27173 2.00827i 0.190475 0.0725619i
\(767\) −0.0107109 −0.000386748
\(768\) 3.64398 15.5795i 0.131491 0.562178i
\(769\) −24.5966 −0.886975 −0.443487 0.896281i \(-0.646259\pi\)
−0.443487 + 0.896281i \(0.646259\pi\)
\(770\) 13.1930 5.02591i 0.475444 0.181121i
\(771\) 5.82477i 0.209774i
\(772\) −32.2636 + 28.7548i −1.16119 + 1.03491i
\(773\) 20.6191i 0.741618i −0.928709 0.370809i \(-0.879080\pi\)
0.928709 0.370809i \(-0.120920\pi\)
\(774\) 3.24864 + 8.52769i 0.116770 + 0.306522i
\(775\) 7.56447 0.271724
\(776\) −15.9579 + 30.7378i −0.572857 + 1.10342i
\(777\) 1.15793 0.0415405
\(778\) 18.5435 + 48.6769i 0.664818 + 1.74515i
\(779\) 0.367207i 0.0131566i
\(780\) 0.131473 + 0.147516i 0.00470748 + 0.00528191i
\(781\) 24.4248i 0.873989i
\(782\) 0.369101 0.140610i 0.0131990 0.00502820i
\(783\) −1.31147 −0.0468680
\(784\) −2.54970 + 22.0963i −0.0910606 + 0.789152i
\(785\) 12.8223 0.457648
\(786\) 4.75960 1.81318i 0.169769 0.0646739i
\(787\) 10.1637i 0.362297i −0.983456 0.181148i \(-0.942019\pi\)
0.983456 0.181148i \(-0.0579814\pi\)
\(788\) −27.0478 30.3484i −0.963539 1.08112i
\(789\) 18.1314i 0.645496i
\(790\) 14.3397 + 37.6418i 0.510184 + 1.33924i
\(791\) 23.1632 0.823588
\(792\) 7.74453 + 4.02068i 0.275190 + 0.142869i
\(793\) −0.387972 −0.0137773
\(794\) 2.61187 + 6.85616i 0.0926917 + 0.243316i
\(795\) 4.00302i 0.141972i
\(796\) 20.4781 18.2510i 0.725825 0.646888i
\(797\) 27.7332i 0.982360i 0.871058 + 0.491180i \(0.163434\pi\)
−0.871058 + 0.491180i \(0.836566\pi\)
\(798\) 4.75476 1.81133i 0.168317 0.0641205i
\(799\) 2.04837 0.0724663
\(800\) −3.17243 12.4712i −0.112162 0.440925i
\(801\) −2.48847 −0.0879259
\(802\) −17.4213 + 6.63669i −0.615169 + 0.234350i
\(803\) 22.5285i 0.795013i
\(804\) −15.9767 + 14.2391i −0.563453 + 0.502175i
\(805\) 3.23582i 0.114048i
\(806\) −0.0613244 0.160977i −0.00216006 0.00567017i
\(807\) 5.46914 0.192523
\(808\) 23.0731 + 11.9787i 0.811710 + 0.421411i
\(809\) −23.6857 −0.832745 −0.416373 0.909194i \(-0.636699\pi\)
−0.416373 + 0.909194i \(0.636699\pi\)
\(810\) −1.35791 3.56451i −0.0477120 0.125244i
\(811\) 33.9216i 1.19115i −0.803300 0.595574i \(-0.796925\pi\)
0.803300 0.595574i \(-0.203075\pi\)
\(812\) −2.09367 2.34915i −0.0734733 0.0824390i
\(813\) 6.30219i 0.221027i
\(814\) −3.93523 + 1.49913i −0.137930 + 0.0525445i
\(815\) 3.92964 0.137649
\(816\) −1.10980 0.128060i −0.0388508 0.00448301i
\(817\) −19.3513 −0.677015
\(818\) 52.9794 20.1826i 1.85238 0.705669i
\(819\) 0.0439460i 0.00153560i
\(820\) 0.439474 + 0.493101i 0.0153471 + 0.0172198i
\(821\) 11.7295i 0.409361i −0.978829 0.204680i \(-0.934385\pi\)
0.978829 0.204680i \(-0.0656155\pi\)
\(822\) −3.16226 8.30095i −0.110297 0.289529i
\(823\) −21.7912 −0.759592 −0.379796 0.925070i \(-0.624006\pi\)
−0.379796 + 0.925070i \(0.624006\pi\)
\(824\) −17.8843 + 34.4483i −0.623029 + 1.20006i
\(825\) 7.01814 0.244340
\(826\) 0.176608 + 0.463597i 0.00614499 + 0.0161306i
\(827\) 40.1470i 1.39605i −0.716074 0.698024i \(-0.754063\pi\)
0.716074 0.698024i \(-0.245937\pi\)
\(828\) −1.49307 + 1.33069i −0.0518878 + 0.0462447i
\(829\) 8.43995i 0.293132i −0.989201 0.146566i \(-0.953178\pi\)
0.989201 0.146566i \(-0.0468220\pi\)
\(830\) 49.7121 18.9379i 1.72553 0.657345i
\(831\) −24.5962 −0.853234
\(832\) −0.239678 + 0.168615i −0.00830933 + 0.00584566i
\(833\) 1.55306 0.0538103
\(834\) 21.6511 8.24801i 0.749715 0.285605i
\(835\) 48.4159i 1.67550i
\(836\) −13.8140 + 12.3116i −0.477766 + 0.425807i
\(837\) 3.32528i 0.114938i
\(838\) −2.24706 5.89854i −0.0776234 0.203762i
\(839\) −4.94829 −0.170834 −0.0854169 0.996345i \(-0.527222\pi\)
−0.0854169 + 0.996345i \(0.527222\pi\)
\(840\) 4.21708 8.12284i 0.145503 0.280264i
\(841\) 27.2801 0.940691
\(842\) 13.1279 + 34.4609i 0.452418 + 1.18760i
\(843\) 20.9976i 0.723196i
\(844\) 23.2935 + 26.1359i 0.801794 + 0.899634i
\(845\) 35.0599i 1.20610i
\(846\) −9.69261 + 3.69242i −0.333239 + 0.126948i
\(847\) 1.77803 0.0610937
\(848\) 5.89744 + 0.680509i 0.202519 + 0.0233688i
\(849\) −6.64534 −0.228068
\(850\) −0.839645 + 0.319864i −0.0287996 + 0.0109713i
\(851\) 0.965182i 0.0330860i
\(852\) −10.5351 11.8206i −0.360926 0.404968i
\(853\) 27.0000i 0.924463i 0.886759 + 0.462231i \(0.152951\pi\)
−0.886759 + 0.462231i \(0.847049\pi\)
\(854\) 6.39712 + 16.7925i 0.218905 + 0.574626i
\(855\) 8.08869 0.276628
\(856\) 29.1671 + 15.1425i 0.996910 + 0.517560i
\(857\) 46.0104 1.57169 0.785843 0.618426i \(-0.212229\pi\)
0.785843 + 0.618426i \(0.212229\pi\)
\(858\) −0.0568954 0.149351i −0.00194238 0.00509874i
\(859\) 9.27196i 0.316355i 0.987411 + 0.158178i \(0.0505619\pi\)
−0.987411 + 0.158178i \(0.949438\pi\)
\(860\) −25.9857 + 23.1596i −0.886106 + 0.789737i
\(861\) 0.146898i 0.00500628i
\(862\) −21.8659 + 8.32984i −0.744755 + 0.283716i
\(863\) −35.5800 −1.21116 −0.605579 0.795785i \(-0.707059\pi\)
−0.605579 + 0.795785i \(0.707059\pi\)
\(864\) 5.48226 1.39457i 0.186510 0.0474443i
\(865\) −2.89476 −0.0984249
\(866\) −22.8999 + 8.72378i −0.778172 + 0.296446i
\(867\) 16.9220i 0.574701i
\(868\) −5.95636 + 5.30858i −0.202172 + 0.180185i
\(869\) 32.5793i 1.10518i
\(870\) −1.78085 4.67474i −0.0603766 0.158489i
\(871\) 0.391970 0.0132814
\(872\) 10.7652 + 5.58890i 0.364556 + 0.189264i
\(873\) −12.2447 −0.414421
\(874\) −1.50982 3.96329i −0.0510705 0.134060i
\(875\) 8.81814i 0.298107i
\(876\) 9.71713 + 10.9029i 0.328311 + 0.368374i
\(877\) 9.91363i 0.334760i −0.985892 0.167380i \(-0.946469\pi\)
0.985892 0.167380i \(-0.0535306\pi\)
\(878\) 0.690530 0.263059i 0.0233042 0.00887780i
\(879\) −23.5701 −0.794999
\(880\) −3.81541 + 33.0652i −0.128617 + 1.11463i
\(881\) 49.0720 1.65328 0.826639 0.562732i \(-0.190250\pi\)
0.826639 + 0.562732i \(0.190250\pi\)
\(882\) −7.34885 + 2.79956i −0.247449 + 0.0942661i
\(883\) 4.34547i 0.146237i −0.997323 0.0731183i \(-0.976705\pi\)
0.997323 0.0731183i \(-0.0232951\pi\)
\(884\) 0.0136139 + 0.0152751i 0.000457884 + 0.000513757i
\(885\) 0.788663i 0.0265106i
\(886\) 15.0180 + 39.4223i 0.504539 + 1.32442i
\(887\) −11.4503 −0.384463 −0.192232 0.981350i \(-0.561572\pi\)
−0.192232 + 0.981350i \(0.561572\pi\)
\(888\) −1.25787 + 2.42288i −0.0422115 + 0.0813067i
\(889\) 23.1883 0.777712
\(890\) −3.37912 8.87020i −0.113268 0.297330i
\(891\) 3.08512i 0.103355i
\(892\) 29.4245 26.2244i 0.985205 0.878059i
\(893\) 21.9948i 0.736026i
\(894\) 3.64584 1.38889i 0.121935 0.0464514i
\(895\) 19.4014 0.648518
\(896\) 11.2501 + 7.59369i 0.375838 + 0.253687i
\(897\) 0.0366308 0.00122307
\(898\) 24.2557 9.24024i 0.809422 0.308351i
\(899\) 4.36100i 0.145447i
\(900\) 3.39649 3.02711i 0.113216 0.100904i
\(901\) 0.414508i 0.0138093i
\(902\) −0.190184 0.499234i −0.00633244 0.0166227i
\(903\) −7.74133 −0.257615
\(904\) −25.1625 + 48.4673i −0.836892 + 1.61200i
\(905\) 20.2947 0.674618
\(906\) −6.47966 17.0091i −0.215272 0.565091i
\(907\) 45.2916i 1.50388i −0.659229 0.751942i \(-0.729117\pi\)
0.659229 0.751942i \(-0.270883\pi\)
\(908\) 21.7667 + 24.4228i 0.722352 + 0.810498i
\(909\) 9.19144i 0.304861i
\(910\) −0.156646 + 0.0596746i −0.00519277 + 0.00197820i
\(911\) 22.6911 0.751791 0.375896 0.926662i \(-0.377335\pi\)
0.375896 + 0.926662i \(0.377335\pi\)
\(912\) −1.37507 + 11.9167i −0.0455331 + 0.394600i
\(913\) −43.0262 −1.42396
\(914\) −3.50515 + 1.33529i −0.115940 + 0.0441676i
\(915\) 28.5670i 0.944396i
\(916\) 12.6544 + 14.1986i 0.418113 + 0.469133i
\(917\) 4.32070i 0.142682i
\(918\) −0.140610 0.369101i −0.00464082 0.0121822i
\(919\) −39.0435 −1.28793 −0.643963 0.765057i \(-0.722711\pi\)
−0.643963 + 0.765057i \(0.722711\pi\)
\(920\) −6.77072 3.51511i −0.223224 0.115890i
\(921\) 14.0635 0.463409
\(922\) −8.45072 22.1832i −0.278310 0.730564i
\(923\) 0.290006i 0.00954566i
\(924\) −5.52617 + 4.92518i −0.181798 + 0.162026i
\(925\) 2.19563i 0.0721920i
\(926\) −7.25501 + 2.76381i −0.238414 + 0.0908244i
\(927\) −13.7228 −0.450717
\(928\) 7.18980 1.82894i 0.236017 0.0600378i
\(929\) 2.68826 0.0881990 0.0440995 0.999027i \(-0.485958\pi\)
0.0440995 + 0.999027i \(0.485958\pi\)
\(930\) −11.8530 + 4.51542i −0.388675 + 0.148067i
\(931\) 16.6762i 0.546541i
\(932\) −34.0178 + 30.3182i −1.11429 + 0.993106i
\(933\) 22.2815i 0.729464i
\(934\) 15.3084 + 40.1846i 0.500907 + 1.31488i
\(935\) 2.32402 0.0760036
\(936\) −0.0919539 0.0477391i −0.00300561 0.00156040i
\(937\) 10.7840 0.352298 0.176149 0.984363i \(-0.443636\pi\)
0.176149 + 0.984363i \(0.443636\pi\)
\(938\) −6.46304 16.9655i −0.211026 0.553944i
\(939\) 18.3737i 0.599604i
\(940\) −26.3234 29.5355i −0.858573 0.963342i
\(941\) 56.8767i 1.85413i −0.374904 0.927063i \(-0.622324\pi\)
0.374904 0.927063i \(-0.377676\pi\)
\(942\) −6.28266 + 2.39339i −0.204700 + 0.0779809i
\(943\) 0.122446 0.00398738
\(944\) −1.16190 0.134072i −0.0378165 0.00436366i
\(945\) 3.23582 0.105261
\(946\) 26.3089 10.0224i 0.855377 0.325857i
\(947\) 55.3235i 1.79777i −0.438184 0.898886i \(-0.644378\pi\)
0.438184 0.898886i \(-0.355622\pi\)
\(948\) −14.0523 15.7671i −0.456398 0.512090i
\(949\) 0.267490i 0.00868309i
\(950\) 3.43460 + 9.01583i 0.111433 + 0.292512i
\(951\) 6.09283 0.197573
\(952\) 0.436674 0.841110i 0.0141527 0.0272605i
\(953\) 11.5435 0.373932 0.186966 0.982366i \(-0.440135\pi\)
0.186966 + 0.982366i \(0.440135\pi\)
\(954\) 0.747197 + 1.96139i 0.0241914 + 0.0635025i
\(955\) 37.1835i 1.20323i
\(956\) −24.8082 + 22.1102i −0.802353 + 0.715093i
\(957\) 4.04603i 0.130790i
\(958\) −23.0398 + 8.77704i −0.744381 + 0.283573i
\(959\) 7.53549 0.243334
\(960\) 12.4154 + 17.6479i 0.400705 + 0.569583i
\(961\) −19.9425 −0.643307
\(962\) 0.0467245 0.0177998i 0.00150646 0.000573888i
\(963\) 11.6190i 0.374418i
\(964\) 9.43038 8.40478i 0.303732 0.270700i
\(965\) 58.2833i 1.87620i
\(966\) −0.603992 1.58548i −0.0194331 0.0510121i
\(967\) −55.0285 −1.76960 −0.884798 0.465975i \(-0.845704\pi\)
−0.884798 + 0.465975i \(0.845704\pi\)
\(968\) −1.93149 + 3.72039i −0.0620805 + 0.119578i
\(969\) 0.837575 0.0269068
\(970\) −16.6272 43.6465i −0.533868 1.40140i
\(971\) 4.42957i 0.142152i −0.997471 0.0710759i \(-0.977357\pi\)
0.997471 0.0710759i \(-0.0226433\pi\)
\(972\) 1.33069 + 1.49307i 0.0426820 + 0.0478903i
\(973\) 19.6546i 0.630096i
\(974\) 8.77032 3.34107i 0.281019 0.107055i
\(975\) −0.0833291 −0.00266867
\(976\) −42.0863 4.85636i −1.34715 0.155448i
\(977\) 22.6814 0.725642 0.362821 0.931859i \(-0.381814\pi\)
0.362821 + 0.931859i \(0.381814\pi\)
\(978\) −1.92544 + 0.733500i −0.0615688 + 0.0234547i
\(979\) 7.67723i 0.245365i
\(980\) −19.9581 22.3936i −0.637539 0.715336i
\(981\) 4.28843i 0.136919i
\(982\) −5.96276 15.6523i −0.190279 0.499484i
\(983\) 39.9862 1.27536 0.637680 0.770301i \(-0.279894\pi\)
0.637680 + 0.770301i \(0.279894\pi\)
\(984\) −0.307374 0.159578i −0.00979873 0.00508715i
\(985\) 54.8235 1.74682
\(986\) −0.184405 0.484064i −0.00587266 0.0154158i
\(987\) 8.79883i 0.280070i
\(988\) 0.164019 0.146181i 0.00521814 0.00465064i
\(989\) 6.45272i 0.205185i
\(990\) −10.9969 + 4.18930i −0.349506 + 0.133145i
\(991\) −14.0401 −0.445998 −0.222999 0.974819i \(-0.571585\pi\)
−0.222999 + 0.974819i \(0.571585\pi\)
\(992\) −4.63734 18.2300i −0.147236 0.578804i
\(993\) −0.142627 −0.00452612
\(994\) 12.5522 4.78180i 0.398133 0.151670i
\(995\) 36.9930i 1.17276i
\(996\) −20.8229 + 18.5583i −0.659800 + 0.588044i
\(997\) 17.4381i 0.552271i −0.961119 0.276135i \(-0.910946\pi\)
0.961119 0.276135i \(-0.0890538\pi\)
\(998\) −8.78942 23.0723i −0.278224 0.730339i
\(999\) −0.965182 −0.0305370
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.2.f.d.277.4 yes 20
4.3 odd 2 2208.2.f.d.1105.9 20
8.3 odd 2 2208.2.f.d.1105.12 20
8.5 even 2 inner 552.2.f.d.277.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.2.f.d.277.3 20 8.5 even 2 inner
552.2.f.d.277.4 yes 20 1.1 even 1 trivial
2208.2.f.d.1105.9 20 4.3 odd 2
2208.2.f.d.1105.12 20 8.3 odd 2