L(s) = 1 | + 5.29i·3-s − 11.1·5-s + 18.5i·7-s − 1.00·9-s + 11.8i·11-s − 40.2·13-s − 59.1i·15-s − 102.·17-s − 98.0·21-s + 125.·25-s + 137. i·27-s + 54·29-s − 62.6·33-s − 207. i·35-s − 212. i·39-s + ⋯ |
L(s) = 1 | + 1.01i·3-s − 0.999·5-s + 0.999i·7-s − 0.0370·9-s + 0.324i·11-s − 0.858·13-s − 1.01i·15-s − 1.46·17-s − 1.01·21-s + 1.00·25-s + 0.980i·27-s + 0.345·29-s − 0.330·33-s − 0.999i·35-s − 0.874i·39-s + ⋯ |
Λ(s)=(=(560s/2ΓC(s)L(s)iΛ(4−s)
Λ(s)=(=(560s/2ΓC(s+3/2)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
560
= 24⋅5⋅7
|
Sign: |
i
|
Analytic conductor: |
33.0410 |
Root analytic conductor: |
5.74813 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ560(559,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 560, ( :3/2), i)
|
Particular Values
L(2) |
≈ |
0.01381686027 |
L(21) |
≈ |
0.01381686027 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+11.1T |
| 7 | 1−18.5iT |
good | 3 | 1−5.29iT−27T2 |
| 11 | 1−11.8iT−1.33e3T2 |
| 13 | 1+40.2T+2.19e3T2 |
| 17 | 1+102.T+4.91e3T2 |
| 19 | 1+6.85e3T2 |
| 23 | 1+1.21e4T2 |
| 29 | 1−54T+2.43e4T2 |
| 31 | 1+2.97e4T2 |
| 37 | 1−5.06e4T2 |
| 41 | 1−6.89e4T2 |
| 43 | 1+7.95e4T2 |
| 47 | 1+619.iT−1.03e5T2 |
| 53 | 1−1.48e5T2 |
| 59 | 1+2.05e5T2 |
| 61 | 1−2.26e5T2 |
| 67 | 1+3.00e5T2 |
| 71 | 1+863.iT−3.57e5T2 |
| 73 | 1−523.T+3.89e5T2 |
| 79 | 1+1.38e3iT−4.93e5T2 |
| 83 | 1−47.6iT−5.71e5T2 |
| 89 | 1−7.04e5T2 |
| 97 | 1−1.65e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.97446742269934774313160447588, −10.14191678023177708248960077131, −9.205631740162166647846577570091, −8.611266321821291651449529602339, −7.49535237374166221032348866420, −6.53952725778026332426293031947, −5.08620032099521976642001963032, −4.54004713186749754670027663461, −3.48260769112308358706784146607, −2.23358587901637427027205855716,
0.00466066659332570932309269716, 1.09192184039771230722238159706, 2.57192885542672481855826070835, 3.97615223445963869253852007286, 4.76311010377699498829224649719, 6.42663675288941001808518713762, 7.09184252326596840360865359561, 7.71408930089632715994406201013, 8.520840712004308781724209507971, 9.726757750335555876684513357505