L(s) = 1 | + 7.05i·3-s + (9.69 + 5.57i)5-s + (−18.4 + 1.81i)7-s − 22.7·9-s + 22.9i·11-s + 35.9·13-s + (−39.3 + 68.3i)15-s − 80.0·17-s + 39.9·19-s + (−12.7 − 129. i)21-s − 183.·23-s + (62.8 + 108. i)25-s + 30.1i·27-s + 41.8·29-s − 223.·31-s + ⋯ |
L(s) = 1 | + 1.35i·3-s + (0.866 + 0.498i)5-s + (−0.995 + 0.0978i)7-s − 0.841·9-s + 0.629i·11-s + 0.766·13-s + (−0.676 + 1.17i)15-s − 1.14·17-s + 0.481·19-s + (−0.132 − 1.35i)21-s − 1.66·23-s + (0.502 + 0.864i)25-s + 0.214i·27-s + 0.268·29-s − 1.29·31-s + ⋯ |
Λ(s)=(=(560s/2ΓC(s)L(s)(−0.812+0.583i)Λ(4−s)
Λ(s)=(=(560s/2ΓC(s+3/2)L(s)(−0.812+0.583i)Λ(1−s)
Degree: |
2 |
Conductor: |
560
= 24⋅5⋅7
|
Sign: |
−0.812+0.583i
|
Analytic conductor: |
33.0410 |
Root analytic conductor: |
5.74813 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ560(559,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 560, ( :3/2), −0.812+0.583i)
|
Particular Values
L(2) |
≈ |
1.039041675 |
L(21) |
≈ |
1.039041675 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−9.69−5.57i)T |
| 7 | 1+(18.4−1.81i)T |
good | 3 | 1−7.05iT−27T2 |
| 11 | 1−22.9iT−1.33e3T2 |
| 13 | 1−35.9T+2.19e3T2 |
| 17 | 1+80.0T+4.91e3T2 |
| 19 | 1−39.9T+6.85e3T2 |
| 23 | 1+183.T+1.21e4T2 |
| 29 | 1−41.8T+2.43e4T2 |
| 31 | 1+223.T+2.97e4T2 |
| 37 | 1−91.3iT−5.06e4T2 |
| 41 | 1+138.iT−6.89e4T2 |
| 43 | 1+169.T+7.95e4T2 |
| 47 | 1−92.1iT−1.03e5T2 |
| 53 | 1+258.iT−1.48e5T2 |
| 59 | 1−250.T+2.05e5T2 |
| 61 | 1+65.9iT−2.26e5T2 |
| 67 | 1−658.T+3.00e5T2 |
| 71 | 1+370.iT−3.57e5T2 |
| 73 | 1+511.T+3.89e5T2 |
| 79 | 1−26.3iT−4.93e5T2 |
| 83 | 1−1.12e3iT−5.71e5T2 |
| 89 | 1+1.59e3iT−7.04e5T2 |
| 97 | 1+927.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.59563910769091796477319892739, −9.928123177384822854310743429426, −9.466026925652555221092016784635, −8.616870321696890676355572072736, −7.07447824550760892053165695142, −6.21698498497414548104465184384, −5.34827945321897764483970442898, −4.15062026329563984041484443045, −3.32286625231057977898920329352, −2.04836286001859435659108897722,
0.29348300921991138364711009147, 1.48932457252497201326492026421, 2.52705876382220522634493251787, 3.93273027880068922353824425131, 5.59231856389937948043835319734, 6.26208272916152084687547642804, 6.89564883910688665950149276960, 8.063300362731704918605986537448, 8.865483191515453063513871129246, 9.716027704822262142706530562699