L(s) = 1 | + 5.10i·3-s − 11.1·5-s + 18.5i·7-s + 0.987·9-s + 56.4i·11-s + 93.4·13-s − 57.0i·15-s + 133.·17-s − 94.4·21-s + 125.·25-s + 142. i·27-s − 293.·29-s − 287.·33-s − 207. i·35-s + 476. i·39-s + ⋯ |
L(s) = 1 | + 0.981i·3-s − 0.999·5-s + 0.999i·7-s + 0.0365·9-s + 1.54i·11-s + 1.99·13-s − 0.981i·15-s + 1.91·17-s − 0.981·21-s + 1.00·25-s + 1.01i·27-s − 1.87·29-s − 1.51·33-s − 0.999i·35-s + 1.95i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.866 - 0.5i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.866 - 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.773106712\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.773106712\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + 11.1T \) |
| 7 | \( 1 - 18.5iT \) |
good | 3 | \( 1 - 5.10iT - 27T^{2} \) |
| 11 | \( 1 - 56.4iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 93.4T + 2.19e3T^{2} \) |
| 17 | \( 1 - 133.T + 4.91e3T^{2} \) |
| 19 | \( 1 + 6.85e3T^{2} \) |
| 23 | \( 1 + 1.21e4T^{2} \) |
| 29 | \( 1 + 293.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 2.97e4T^{2} \) |
| 37 | \( 1 - 5.06e4T^{2} \) |
| 41 | \( 1 - 6.89e4T^{2} \) |
| 43 | \( 1 + 7.95e4T^{2} \) |
| 47 | \( 1 - 464. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 1.48e5T^{2} \) |
| 59 | \( 1 + 2.05e5T^{2} \) |
| 61 | \( 1 - 2.26e5T^{2} \) |
| 67 | \( 1 + 3.00e5T^{2} \) |
| 71 | \( 1 + 863. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 523.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 487. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 47.6iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 7.04e5T^{2} \) |
| 97 | \( 1 - 8.91T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75366304558648414557700993265, −9.754641005206173428733307805646, −9.127434462707278225831011542607, −8.113666150897531841887385373771, −7.31574256708600488001359512072, −5.96599745133750317687164246027, −5.01214383094717871361788175447, −3.98686749920909376786532335788, −3.30174515804012075183585366124, −1.50141352032545687751640243713,
0.64768688030830489541514491687, 1.28426465888549910823820143316, 3.48045641947450694057927250443, 3.78233804435459338053449594835, 5.57014327699056540694881045613, 6.46323392091214495684732360586, 7.46668484375992013001999538963, 8.007097840826949105235724318583, 8.756010834562195697058519201411, 10.21009306719603126530309114071