L(s) = 1 | + 1.73·2-s + 1.99·4-s − 7-s + 1.73·8-s − 1.73·11-s − 1.73·14-s + 0.999·16-s − 2.99·22-s + 25-s − 1.99·28-s + 37-s + 43-s − 3.46·44-s + 49-s + 1.73·50-s − 1.73·53-s − 1.73·56-s − 1.00·64-s − 67-s + 1.73·71-s + 1.73·74-s + 1.73·77-s − 79-s + 1.73·86-s − 2.99·88-s + 1.73·98-s + 1.99·100-s + ⋯ |
L(s) = 1 | + 1.73·2-s + 1.99·4-s − 7-s + 1.73·8-s − 1.73·11-s − 1.73·14-s + 0.999·16-s − 2.99·22-s + 25-s − 1.99·28-s + 37-s + 43-s − 3.46·44-s + 49-s + 1.73·50-s − 1.73·53-s − 1.73·56-s − 1.00·64-s − 67-s + 1.73·71-s + 1.73·74-s + 1.73·77-s − 79-s + 1.73·86-s − 2.99·88-s + 1.73·98-s + 1.99·100-s + ⋯ |
Λ(s)=(=(567s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(567s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
567
= 34⋅7
|
Sign: |
1
|
Analytic conductor: |
0.282969 |
Root analytic conductor: |
0.531949 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ567(244,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 567, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.958716653 |
L(21) |
≈ |
1.958716653 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+T |
good | 2 | 1−1.73T+T2 |
| 5 | 1−T2 |
| 11 | 1+1.73T+T2 |
| 13 | 1−T2 |
| 17 | 1−T2 |
| 19 | 1−T2 |
| 23 | 1+T2 |
| 29 | 1+T2 |
| 31 | 1−T2 |
| 37 | 1−T+T2 |
| 41 | 1−T2 |
| 43 | 1−T+T2 |
| 47 | 1−T2 |
| 53 | 1+1.73T+T2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1+T+T2 |
| 71 | 1−1.73T+T2 |
| 73 | 1−T2 |
| 79 | 1+T+T2 |
| 83 | 1−T2 |
| 89 | 1−T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.07067185158620858047463607831, −10.46569589200719895761701231757, −9.371246171645520668549116380100, −7.970835435007244695063973068796, −7.02666353442432348798601254878, −6.12269619030713511372617528053, −5.33569885850940032010161472943, −4.42938801666431015361494420647, −3.20497650277098718036239044932, −2.52899724031951772135360380788,
2.52899724031951772135360380788, 3.20497650277098718036239044932, 4.42938801666431015361494420647, 5.33569885850940032010161472943, 6.12269619030713511372617528053, 7.02666353442432348798601254878, 7.970835435007244695063973068796, 9.371246171645520668549116380100, 10.46569589200719895761701231757, 11.07067185158620858047463607831