L(s) = 1 | + (0.642 + 0.766i)2-s + (−0.642 − 0.766i)3-s + (0.766 − 0.642i)5-s + (0.173 − 0.984i)6-s + 7-s + (0.866 − 0.499i)8-s + (−0.173 + 0.984i)9-s + (0.984 + 0.173i)10-s + (0.5 − 0.866i)11-s + (−0.342 − 0.939i)13-s + (0.642 + 0.766i)14-s + (−0.984 − 0.173i)15-s + (0.939 + 0.342i)16-s + (−0.866 + 0.500i)18-s + (−0.642 − 0.766i)21-s + (0.984 − 0.173i)22-s + ⋯ |
L(s) = 1 | + (0.642 + 0.766i)2-s + (−0.642 − 0.766i)3-s + (0.766 − 0.642i)5-s + (0.173 − 0.984i)6-s + 7-s + (0.866 − 0.499i)8-s + (−0.173 + 0.984i)9-s + (0.984 + 0.173i)10-s + (0.5 − 0.866i)11-s + (−0.342 − 0.939i)13-s + (0.642 + 0.766i)14-s + (−0.984 − 0.173i)15-s + (0.939 + 0.342i)16-s + (−0.866 + 0.500i)18-s + (−0.642 − 0.766i)21-s + (0.984 − 0.173i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.776 + 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.776 + 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.976868985\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.976868985\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.642 + 0.766i)T \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (-0.642 - 0.766i)T + (-0.173 + 0.984i)T^{2} \) |
| 5 | \( 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 7 | \( 1 - T + T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.342 + 0.939i)T + (-0.766 + 0.642i)T^{2} \) |
| 17 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 23 | \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.342 - 0.939i)T + (-0.766 + 0.642i)T^{2} \) |
| 31 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.984 - 0.173i)T + (0.939 - 0.342i)T^{2} \) |
| 43 | \( 1 + (-0.173 - 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (0.939 - 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 53 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 59 | \( 1 + (0.342 - 0.939i)T + (-0.766 - 0.642i)T^{2} \) |
| 61 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 67 | \( 1 + (-0.642 + 0.766i)T + (-0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 73 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 79 | \( 1 + (0.342 - 0.939i)T + (-0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + T + T^{2} \) |
| 89 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 97 | \( 1 + (-0.642 - 0.766i)T + (-0.173 + 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.435600656820652202935685004320, −7.83531513714842721794740981663, −7.11790872596884508231022845742, −6.29271175231519682124500594598, −5.64013421605171804396830491855, −5.20965850207606028506237884281, −4.65712669219002156218858512658, −3.28086175450440497017471336957, −1.69968242447638502770920694400, −1.22646178390200968141256250067,
1.75970151453805307822597708042, 2.33094083713942036630560914682, 3.52009903605935007566659985082, 4.43488025879247029141618963240, 4.69839876431917125472767295960, 5.66875757650220144508670130383, 6.56535952342299081619968610698, 7.21396120487063478747909778135, 8.260190637850152282745270959893, 9.138111742761920786244593687545