L(s) = 1 | + (0.642 + 0.766i)2-s + (−0.642 − 0.766i)3-s + (0.766 − 0.642i)5-s + (0.173 − 0.984i)6-s + 7-s + (0.866 − 0.499i)8-s + (−0.173 + 0.984i)9-s + (0.984 + 0.173i)10-s + (0.5 − 0.866i)11-s + (−0.342 − 0.939i)13-s + (0.642 + 0.766i)14-s + (−0.984 − 0.173i)15-s + (0.939 + 0.342i)16-s + (−0.866 + 0.500i)18-s + (−0.642 − 0.766i)21-s + (0.984 − 0.173i)22-s + ⋯ |
L(s) = 1 | + (0.642 + 0.766i)2-s + (−0.642 − 0.766i)3-s + (0.766 − 0.642i)5-s + (0.173 − 0.984i)6-s + 7-s + (0.866 − 0.499i)8-s + (−0.173 + 0.984i)9-s + (0.984 + 0.173i)10-s + (0.5 − 0.866i)11-s + (−0.342 − 0.939i)13-s + (0.642 + 0.766i)14-s + (−0.984 − 0.173i)15-s + (0.939 + 0.342i)16-s + (−0.866 + 0.500i)18-s + (−0.642 − 0.766i)21-s + (0.984 − 0.173i)22-s + ⋯ |
Λ(s)=(=(3249s/2ΓC(s)L(s)(0.776+0.630i)Λ(1−s)
Λ(s)=(=(3249s/2ΓC(s)L(s)(0.776+0.630i)Λ(1−s)
Degree: |
2 |
Conductor: |
3249
= 32⋅192
|
Sign: |
0.776+0.630i
|
Analytic conductor: |
1.62146 |
Root analytic conductor: |
1.27336 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3249(1777,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3249, ( :0), 0.776+0.630i)
|
Particular Values
L(21) |
≈ |
1.976868985 |
L(21) |
≈ |
1.976868985 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.642+0.766i)T |
| 19 | 1 |
good | 2 | 1+(−0.642−0.766i)T+(−0.173+0.984i)T2 |
| 5 | 1+(−0.766+0.642i)T+(0.173−0.984i)T2 |
| 7 | 1−T+T2 |
| 11 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 13 | 1+(0.342+0.939i)T+(−0.766+0.642i)T2 |
| 17 | 1+(−0.939+0.342i)T2 |
| 23 | 1+(0.173−0.984i)T+(−0.939−0.342i)T2 |
| 29 | 1+(−0.342−0.939i)T+(−0.766+0.642i)T2 |
| 31 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 37 | 1−T2 |
| 41 | 1+(0.984−0.173i)T+(0.939−0.342i)T2 |
| 43 | 1+(−0.173−0.984i)T+(−0.939+0.342i)T2 |
| 47 | 1+(0.939−0.342i)T+(0.766−0.642i)T2 |
| 53 | 1+(−0.766+0.642i)T2 |
| 59 | 1+(0.342−0.939i)T+(−0.766−0.642i)T2 |
| 61 | 1+(0.766+0.642i)T+(0.173+0.984i)T2 |
| 67 | 1+(−0.642+0.766i)T+(−0.173−0.984i)T2 |
| 71 | 1+(−0.766−0.642i)T2 |
| 73 | 1+(0.173−0.984i)T2 |
| 79 | 1+(0.342−0.939i)T+(−0.766−0.642i)T2 |
| 83 | 1+T+T2 |
| 89 | 1+(−0.173−0.984i)T2 |
| 97 | 1+(−0.642−0.766i)T+(−0.173+0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.435600656820652202935685004320, −7.83531513714842721794740981663, −7.11790872596884508231022845742, −6.29271175231519682124500594598, −5.64013421605171804396830491855, −5.20965850207606028506237884281, −4.65712669219002156218858512658, −3.28086175450440497017471336957, −1.69968242447638502770920694400, −1.22646178390200968141256250067,
1.75970151453805307822597708042, 2.33094083713942036630560914682, 3.52009903605935007566659985082, 4.43488025879247029141618963240, 4.69839876431917125472767295960, 5.66875757650220144508670130383, 6.56535952342299081619968610698, 7.21396120487063478747909778135, 8.260190637850152282745270959893, 9.138111742761920786244593687545