L(s) = 1 | + (−1.33 + 0.467i)2-s + (0.411 + 3.64i)3-s + (1.56 − 1.24i)4-s + (0.218 − 0.454i)5-s + (−2.25 − 4.67i)6-s + (−7.64 + 9.59i)7-s + (−1.50 + 2.39i)8-s + (−4.37 + 0.997i)9-s + (−0.0799 + 0.709i)10-s + (0.992 + 1.57i)11-s + (5.19 + 5.19i)12-s + (10.1 + 2.30i)13-s + (5.72 − 16.3i)14-s + (1.74 + 0.612i)15-s + (0.890 − 3.89i)16-s + (14.5 − 14.5i)17-s + ⋯ |
L(s) = 1 | + (−0.667 + 0.233i)2-s + (0.137 + 1.21i)3-s + (0.390 − 0.311i)4-s + (0.0437 − 0.0909i)5-s + (−0.375 − 0.779i)6-s + (−1.09 + 1.37i)7-s + (−0.188 + 0.299i)8-s + (−0.485 + 0.110i)9-s + (−0.00799 + 0.0709i)10-s + (0.0901 + 0.143i)11-s + (0.432 + 0.432i)12-s + (0.777 + 0.177i)13-s + (0.409 − 1.16i)14-s + (0.116 + 0.0408i)15-s + (0.0556 − 0.243i)16-s + (0.858 − 0.858i)17-s + ⋯ |
Λ(s)=(=(58s/2ΓC(s)L(s)(−0.368−0.929i)Λ(3−s)
Λ(s)=(=(58s/2ΓC(s+1)L(s)(−0.368−0.929i)Λ(1−s)
Degree: |
2 |
Conductor: |
58
= 2⋅29
|
Sign: |
−0.368−0.929i
|
Analytic conductor: |
1.58038 |
Root analytic conductor: |
1.25713 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ58(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 58, ( :1), −0.368−0.929i)
|
Particular Values
L(23) |
≈ |
0.474062+0.697837i |
L(21) |
≈ |
0.474062+0.697837i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.33−0.467i)T |
| 29 | 1+(−4.39+28.6i)T |
good | 3 | 1+(−0.411−3.64i)T+(−8.77+2.00i)T2 |
| 5 | 1+(−0.218+0.454i)T+(−15.5−19.5i)T2 |
| 7 | 1+(7.64−9.59i)T+(−10.9−47.7i)T2 |
| 11 | 1+(−0.992−1.57i)T+(−52.4+109.i)T2 |
| 13 | 1+(−10.1−2.30i)T+(152.+73.3i)T2 |
| 17 | 1+(−14.5+14.5i)T−289iT2 |
| 19 | 1+(9.66+1.08i)T+(351.+80.3i)T2 |
| 23 | 1+(−31.2+15.0i)T+(329.−413.i)T2 |
| 31 | 1+(−3.66+1.28i)T+(751.−599.i)T2 |
| 37 | 1+(28.8−45.9i)T+(−593.−1.23e3i)T2 |
| 41 | 1+(19.7+19.7i)T+1.68e3iT2 |
| 43 | 1+(−13.9+39.8i)T+(−1.44e3−1.15e3i)T2 |
| 47 | 1+(55.8−35.0i)T+(958.−1.99e3i)T2 |
| 53 | 1+(41.8+20.1i)T+(1.75e3+2.19e3i)T2 |
| 59 | 1−69.3T+3.48e3T2 |
| 61 | 1+(−3.94−35.0i)T+(−3.62e3+828.i)T2 |
| 67 | 1+(−111.+25.4i)T+(4.04e3−1.94e3i)T2 |
| 71 | 1+(44.2+10.0i)T+(4.54e3+2.18e3i)T2 |
| 73 | 1+(7.08+2.47i)T+(4.16e3+3.32e3i)T2 |
| 79 | 1+(119.+74.8i)T+(2.70e3+5.62e3i)T2 |
| 83 | 1+(−10.3−12.9i)T+(−1.53e3+6.71e3i)T2 |
| 89 | 1+(−141.+49.5i)T+(6.19e3−4.93e3i)T2 |
| 97 | 1+(−2.65+23.5i)T+(−9.17e3−2.09e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.55901824864154307741345757271, −14.71671184441399882523784226598, −12.96770708547880640656692139746, −11.64069598626368646657282278098, −10.27608566120418118659523343981, −9.353297129068007633300719794662, −8.685022657642728390760700366680, −6.62275860047692305763029445488, −5.19814969627995067249747304040, −3.13298060734985086740534238111,
1.10524545315288457574800217237, 3.43002348639116423745702933750, 6.44435638616473238941529519988, 7.22652889506560312484917960739, 8.446593444369151041667007959328, 10.01671042063103914468371530350, 10.97548056645870480950310121140, 12.65895949092696069094438434789, 13.10886073031330051507393272849, 14.30919901653848782195143251047