L(s) = 1 | + (1.33 − 0.467i)2-s + (−0.558 − 4.96i)3-s + (1.56 − 1.24i)4-s + (−2.91 + 6.04i)5-s + (−3.06 − 6.36i)6-s + (4.81 − 6.03i)7-s + (1.50 − 2.39i)8-s + (−15.5 + 3.54i)9-s + (−1.06 + 9.43i)10-s + (5.19 + 8.26i)11-s + (−7.05 − 7.05i)12-s + (19.8 + 4.52i)13-s + (3.60 − 10.3i)14-s + (31.6 + 11.0i)15-s + (0.890 − 3.89i)16-s + (−13.5 + 13.5i)17-s + ⋯ |
L(s) = 1 | + (0.667 − 0.233i)2-s + (−0.186 − 1.65i)3-s + (0.390 − 0.311i)4-s + (−0.582 + 1.20i)5-s + (−0.510 − 1.06i)6-s + (0.687 − 0.862i)7-s + (0.188 − 0.299i)8-s + (−1.72 + 0.393i)9-s + (−0.106 + 0.943i)10-s + (0.472 + 0.751i)11-s + (−0.588 − 0.588i)12-s + (1.52 + 0.347i)13-s + (0.257 − 0.735i)14-s + (2.10 + 0.737i)15-s + (0.0556 − 0.243i)16-s + (−0.797 + 0.797i)17-s + ⋯ |
Λ(s)=(=(58s/2ΓC(s)L(s)(0.216+0.976i)Λ(3−s)
Λ(s)=(=(58s/2ΓC(s+1)L(s)(0.216+0.976i)Λ(1−s)
Degree: |
2 |
Conductor: |
58
= 2⋅29
|
Sign: |
0.216+0.976i
|
Analytic conductor: |
1.58038 |
Root analytic conductor: |
1.25713 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ58(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 58, ( :1), 0.216+0.976i)
|
Particular Values
L(23) |
≈ |
1.19153−0.955921i |
L(21) |
≈ |
1.19153−0.955921i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.33+0.467i)T |
| 29 | 1+(−8.87+27.6i)T |
good | 3 | 1+(0.558+4.96i)T+(−8.77+2.00i)T2 |
| 5 | 1+(2.91−6.04i)T+(−15.5−19.5i)T2 |
| 7 | 1+(−4.81+6.03i)T+(−10.9−47.7i)T2 |
| 11 | 1+(−5.19−8.26i)T+(−52.4+109.i)T2 |
| 13 | 1+(−19.8−4.52i)T+(152.+73.3i)T2 |
| 17 | 1+(13.5−13.5i)T−289iT2 |
| 19 | 1+(16.3+1.84i)T+(351.+80.3i)T2 |
| 23 | 1+(2.47−1.19i)T+(329.−413.i)T2 |
| 31 | 1+(39.3−13.7i)T+(751.−599.i)T2 |
| 37 | 1+(17.4−27.7i)T+(−593.−1.23e3i)T2 |
| 41 | 1+(−5.70−5.70i)T+1.68e3iT2 |
| 43 | 1+(−18.8+53.9i)T+(−1.44e3−1.15e3i)T2 |
| 47 | 1+(37.3−23.4i)T+(958.−1.99e3i)T2 |
| 53 | 1+(8.97+4.32i)T+(1.75e3+2.19e3i)T2 |
| 59 | 1−21.7T+3.48e3T2 |
| 61 | 1+(9.69+86.0i)T+(−3.62e3+828.i)T2 |
| 67 | 1+(−66.2+15.1i)T+(4.04e3−1.94e3i)T2 |
| 71 | 1+(−26.7−6.09i)T+(4.54e3+2.18e3i)T2 |
| 73 | 1+(23.2+8.13i)T+(4.16e3+3.32e3i)T2 |
| 79 | 1+(−44.4−27.9i)T+(2.70e3+5.62e3i)T2 |
| 83 | 1+(−33.1−41.5i)T+(−1.53e3+6.71e3i)T2 |
| 89 | 1+(127.−44.5i)T+(6.19e3−4.93e3i)T2 |
| 97 | 1+(19.4−172.i)T+(−9.17e3−2.09e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.32726251751923327846175614184, −13.58030952530955789804366855565, −12.53538089207946015755867535358, −11.30650862871011182706674619520, −10.83622010327270371317277447294, −8.180600966214167945575756939091, −6.99529360908554076886630524601, −6.39331270611461636047789913195, −3.93549581021981710437633976504, −1.80765256299452518221139545817,
3.75338256048516801255937575543, 4.80788079235937435581206078429, 5.80967559150555820972094689401, 8.536313792516358365300646386945, 8.941352615524986889283087169873, 10.95075285897414143163323344743, 11.56666304562266115837808621879, 12.91786845752363175006279488626, 14.38961343368066209026714258351, 15.40312121164099131675728171690