Properties

Label 2-58-29.11-c2-0-4
Degree $2$
Conductor $58$
Sign $0.216 + 0.976i$
Analytic cond. $1.58038$
Root an. cond. $1.25713$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.33 − 0.467i)2-s + (−0.558 − 4.96i)3-s + (1.56 − 1.24i)4-s + (−2.91 + 6.04i)5-s + (−3.06 − 6.36i)6-s + (4.81 − 6.03i)7-s + (1.50 − 2.39i)8-s + (−15.5 + 3.54i)9-s + (−1.06 + 9.43i)10-s + (5.19 + 8.26i)11-s + (−7.05 − 7.05i)12-s + (19.8 + 4.52i)13-s + (3.60 − 10.3i)14-s + (31.6 + 11.0i)15-s + (0.890 − 3.89i)16-s + (−13.5 + 13.5i)17-s + ⋯
L(s)  = 1  + (0.667 − 0.233i)2-s + (−0.186 − 1.65i)3-s + (0.390 − 0.311i)4-s + (−0.582 + 1.20i)5-s + (−0.510 − 1.06i)6-s + (0.687 − 0.862i)7-s + (0.188 − 0.299i)8-s + (−1.72 + 0.393i)9-s + (−0.106 + 0.943i)10-s + (0.472 + 0.751i)11-s + (−0.588 − 0.588i)12-s + (1.52 + 0.347i)13-s + (0.257 − 0.735i)14-s + (2.10 + 0.737i)15-s + (0.0556 − 0.243i)16-s + (−0.797 + 0.797i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 58 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.216 + 0.976i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.216 + 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(58\)    =    \(2 \cdot 29\)
Sign: $0.216 + 0.976i$
Analytic conductor: \(1.58038\)
Root analytic conductor: \(1.25713\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{58} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 58,\ (\ :1),\ 0.216 + 0.976i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.19153 - 0.955921i\)
\(L(\frac12)\) \(\approx\) \(1.19153 - 0.955921i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.33 + 0.467i)T \)
29 \( 1 + (-8.87 + 27.6i)T \)
good3 \( 1 + (0.558 + 4.96i)T + (-8.77 + 2.00i)T^{2} \)
5 \( 1 + (2.91 - 6.04i)T + (-15.5 - 19.5i)T^{2} \)
7 \( 1 + (-4.81 + 6.03i)T + (-10.9 - 47.7i)T^{2} \)
11 \( 1 + (-5.19 - 8.26i)T + (-52.4 + 109. i)T^{2} \)
13 \( 1 + (-19.8 - 4.52i)T + (152. + 73.3i)T^{2} \)
17 \( 1 + (13.5 - 13.5i)T - 289iT^{2} \)
19 \( 1 + (16.3 + 1.84i)T + (351. + 80.3i)T^{2} \)
23 \( 1 + (2.47 - 1.19i)T + (329. - 413. i)T^{2} \)
31 \( 1 + (39.3 - 13.7i)T + (751. - 599. i)T^{2} \)
37 \( 1 + (17.4 - 27.7i)T + (-593. - 1.23e3i)T^{2} \)
41 \( 1 + (-5.70 - 5.70i)T + 1.68e3iT^{2} \)
43 \( 1 + (-18.8 + 53.9i)T + (-1.44e3 - 1.15e3i)T^{2} \)
47 \( 1 + (37.3 - 23.4i)T + (958. - 1.99e3i)T^{2} \)
53 \( 1 + (8.97 + 4.32i)T + (1.75e3 + 2.19e3i)T^{2} \)
59 \( 1 - 21.7T + 3.48e3T^{2} \)
61 \( 1 + (9.69 + 86.0i)T + (-3.62e3 + 828. i)T^{2} \)
67 \( 1 + (-66.2 + 15.1i)T + (4.04e3 - 1.94e3i)T^{2} \)
71 \( 1 + (-26.7 - 6.09i)T + (4.54e3 + 2.18e3i)T^{2} \)
73 \( 1 + (23.2 + 8.13i)T + (4.16e3 + 3.32e3i)T^{2} \)
79 \( 1 + (-44.4 - 27.9i)T + (2.70e3 + 5.62e3i)T^{2} \)
83 \( 1 + (-33.1 - 41.5i)T + (-1.53e3 + 6.71e3i)T^{2} \)
89 \( 1 + (127. - 44.5i)T + (6.19e3 - 4.93e3i)T^{2} \)
97 \( 1 + (19.4 - 172. i)T + (-9.17e3 - 2.09e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.32726251751923327846175614184, −13.58030952530955789804366855565, −12.53538089207946015755867535358, −11.30650862871011182706674619520, −10.83622010327270371317277447294, −8.180600966214167945575756939091, −6.99529360908554076886630524601, −6.39331270611461636047789913195, −3.93549581021981710437633976504, −1.80765256299452518221139545817, 3.75338256048516801255937575543, 4.80788079235937435581206078429, 5.80967559150555820972094689401, 8.536313792516358365300646386945, 8.941352615524986889283087169873, 10.95075285897414143163323344743, 11.56666304562266115837808621879, 12.91786845752363175006279488626, 14.38961343368066209026714258351, 15.40312121164099131675728171690

Graph of the $Z$-function along the critical line